These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A pH-dependent stabilization of an active site loop observed from low and high pH crystal structures of mutant monomeric glycinamide ribonucleotide transformylase at 1.8 to 1.9 A. Su Y; Yamashita MM; Greasley SE; Mullen CA; Shim JH; Jennings PA; Benkovic SJ; Wilson IA J Mol Biol; 1998 Aug; 281(3):485-99. PubMed ID: 9698564 [TBL] [Abstract][Full Text] [Related]
3. A rapid screen of active site mutants in glycinamide ribonucleotide transformylase. Warren MS; Marolewski AE; Benkovic SJ Biochemistry; 1996 Jul; 35(27):8855-62. PubMed ID: 8688421 [TBL] [Abstract][Full Text] [Related]
4. Proton transfer dynamics of GART: the pH-dependent catalytic mechanism examined by electrostatic calculations. Morikis D; Elcock AH; Jennings PA; McCammon JA Protein Sci; 2001 Nov; 10(11):2379-92. PubMed ID: 11604543 [TBL] [Abstract][Full Text] [Related]
5. Probing the mechanism of hamster arylamine N-acetyltransferase 2 acetylation by active site modification, site-directed mutagenesis, and pre-steady state and steady state kinetic studies. Wang H; Vath GM; Gleason KJ; Hanna PE; Wagner CR Biochemistry; 2004 Jun; 43(25):8234-46. PubMed ID: 15209520 [TBL] [Abstract][Full Text] [Related]
6. Towards structure-based drug design: crystal structure of a multisubstrate adduct complex of glycinamide ribonucleotide transformylase at 1.96 A resolution. Klein C; Chen P; Arevalo JH; Stura EA; Marolewski A; Warren MS; Benkovic SJ; Wilson IA J Mol Biol; 1995 May; 249(1):153-75. PubMed ID: 7776369 [TBL] [Abstract][Full Text] [Related]
7. Catalytic mechanism of scytalone dehydratase: site-directed mutagenisis, kinetic isotope effects, and alternate substrates. Basarab GS; Steffens JJ; Wawrzak Z; Schwartz RS; Lundqvist T; Jordan DB Biochemistry; 1999 May; 38(19):6012-24. PubMed ID: 10320327 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of the kinetic mechanism of Escherichia coli glycinamide ribonucleotide transformylase. Shim JH; Benkovic SJ Biochemistry; 1998 Jun; 37(24):8776-82. PubMed ID: 9628739 [TBL] [Abstract][Full Text] [Related]
9. The apo and ternary complex structures of a chemotherapeutic target: human glycinamide ribonucleotide transformylase. Dahms TE; Sainz G; Giroux EL; Caperelli CA; Smith JL Biochemistry; 2005 Jul; 44(29):9841-50. PubMed ID: 16026156 [TBL] [Abstract][Full Text] [Related]
10. A single mutation disrupts the pH-dependent dimerization of glycinamide ribonucleotide transformylase. Mullen CA; Jennings PA J Mol Biol; 1998 Mar; 276(4):819-27. PubMed ID: 9500916 [TBL] [Abstract][Full Text] [Related]
11. Mapping the active site of the Haemophilus influenzae methionyl-tRNA formyltransferase: residues important for catalysis and tRNA binding. Newton DT; Mangroo D Biochem J; 1999 Apr; 339 ( Pt 1)(Pt 1):63-9. PubMed ID: 10085228 [TBL] [Abstract][Full Text] [Related]
12. X-ray crystal structure of glycinamide ribonucleotide synthetase from Escherichia coli. Wang W; Kappock TJ; Stubbe J; Ealick SE Biochemistry; 1998 Nov; 37(45):15647-62. PubMed ID: 9843369 [TBL] [Abstract][Full Text] [Related]
13. Site-directed mutagenesis of a highly conserved aspartate in the putative 10-formyl-tetrahydrofolate binding site of yeast C1-tetrahydrofolate synthase. Kirksey TJ; Appling DR Arch Biochem Biophys; 1996 Sep; 333(1):251-9. PubMed ID: 8806778 [TBL] [Abstract][Full Text] [Related]
14. The human trifunctional enzyme of de novo purine biosynthesis: heterologous expression, purification, and preliminary characterization. Poch MT; Qin W; Caperelli CA Protein Expr Purif; 1998 Feb; 12(1):17-24. PubMed ID: 9473452 [TBL] [Abstract][Full Text] [Related]
15. The roles of active-site residues in the catalytic mechanism of trans-3-chloroacrylic acid dehalogenase: a kinetic, NMR, and mutational analysis. Azurmendi HF; Wang SC; Massiah MA; Poelarends GJ; Whitman CP; Mildvan AS Biochemistry; 2004 Apr; 43(14):4082-91. PubMed ID: 15065850 [TBL] [Abstract][Full Text] [Related]
16. Catalytic mechanism of the cyclohydrolase activity of human aminoimidazole carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase. Vergis JM; Beardsley GP Biochemistry; 2004 Feb; 43(5):1184-92. PubMed ID: 14756554 [TBL] [Abstract][Full Text] [Related]
17. Catalytic mechanism of C-C hydrolase MhpC from Escherichia coli: kinetic analysis of His263 and Ser110 site-directed mutants. Li C; Montgomery MG; Mohammed F; Li JJ; Wood SP; Bugg TD J Mol Biol; 2005 Feb; 346(1):241-51. PubMed ID: 15663941 [TBL] [Abstract][Full Text] [Related]
18. Is the critical role of loop 3 of Escherichia coli 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase in catalysis due to loop-3 residues arginine-84 and tryptophan-89? Site-directed mutagenesis, biochemical, and crystallographic studies. Li Y; Blaszczyk J; Wu Y; Shi G; Ji X; Yan H Biochemistry; 2005 Jun; 44(24):8590-9. PubMed ID: 15952765 [TBL] [Abstract][Full Text] [Related]
19. The human glycinamide ribonucleotide transformylase domain: purification, characterization, and kinetic mechanism. Caperelli CA; Giroux EL Arch Biochem Biophys; 1997 May; 341(1):98-103. PubMed ID: 9143358 [TBL] [Abstract][Full Text] [Related]
20. Native-state conformational dynamics of GART: a regulatory pH-dependent coil-helix transition examined by electrostatic calculations. Morikis D; Elcock AH; Jennings PA; McCammon JA Protein Sci; 2001 Nov; 10(11):2363-78. PubMed ID: 11604542 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]