These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 10433832)

  • 41. LvNotch signaling plays a dual role in regulating the position of the ectoderm-endoderm boundary in the sea urchin embryo.
    Sherwood DR; McClay DR
    Development; 2001 Jun; 128(12):2221-32. PubMed ID: 11493542
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nodal and BMP2/4 pattern the mesoderm and endoderm during development of the sea urchin embryo.
    Duboc V; Lapraz F; Saudemont A; Bessodes N; Mekpoh F; Haillot E; Quirin M; Lepage T
    Development; 2010 Jan; 137(2):223-35. PubMed ID: 20040489
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Involvement of Tcf/Lef in establishing cell types along the animal-vegetal axis of sea urchins.
    Huang L; Li X; El-Hodiri HM; Dayal S; Wikramanayake AH; Klein WH
    Dev Genes Evol; 2000 Feb; 210(2):73-81. PubMed ID: 10664150
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Oral-aboral patterning and gastrulation of sea urchin embryos depend on sulfated glycosaminoglycans.
    Bergeron KF; Xu X; Brandhorst BP
    Mech Dev; 2011; 128(1-2):71-89. PubMed ID: 21056656
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nuclear beta-catenin is required to specify vegetal cell fates in the sea urchin embryo.
    Logan CY; Miller JR; Ferkowicz MJ; McClay DR
    Development; 1999 Jan; 126(2):345-57. PubMed ID: 9847248
    [TBL] [Abstract][Full Text] [Related]  

  • 46. T-brain homologue (HpTb) is involved in the archenteron induction signals of micromere descendant cells in the sea urchin embryo.
    Fuchikami T; Mitsunaga-Nakatsubo K; Amemiya S; Hosomi T; Watanabe T; Kurokawa D; Kataoka M; Harada Y; Satoh N; Kusunoki S; Takata K; Shimotori T; Yamamoto T; Sakamoto N; Shimada H; Akasaka K
    Development; 2002 Nov; 129(22):5205-16. PubMed ID: 12399312
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Development of the aboral domain in Nematostella requires β-catenin and the opposing activities of Six3/6 and Frizzled5/8.
    Leclère L; Bause M; Sinigaglia C; Steger J; Rentzsch F
    Development; 2016 May; 143(10):1766-77. PubMed ID: 26989171
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A positive cis-regulatory element with a bicoid target site lies within the sea urchin Spec2a enhancer.
    Gan L; Klein WH
    Dev Biol; 1993 May; 157(1):119-32. PubMed ID: 8097732
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Patterning the sea urchin embryo: gene regulatory networks, signaling pathways, and cellular interactions.
    Angerer LM; Angerer RC
    Curr Top Dev Biol; 2003; 53():159-98. PubMed ID: 12509127
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hbox1 and Hbox7 are involved in pattern formation in sea urchin embryos.
    Ishii M; Mitsunaga-Nakatsubo K; Kitajima T; Kusunoki S; Shimada H; Akasaka K
    Dev Growth Differ; 1999 Jun; 41(3):241-52. PubMed ID: 10400386
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ascidian embryos as a model system to analyze expression and function of developmental genes.
    Satoh N
    Differentiation; 2001 Aug; 68(1):1-12. PubMed ID: 11683488
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A single-cell RNA-seq analysis of Brachyury-expressing cell clusters suggests a morphogenesis-associated signal center of oral ectoderm in sea urchin embryos.
    Satoh N; Hisata K; Foster S; Morita S; Nishitsuji K; Oulhen N; Tominaga H; Wessel GM
    Dev Biol; 2022 Mar; 483():128-142. PubMed ID: 35038441
    [TBL] [Abstract][Full Text] [Related]  

  • 53. LvGroucho and nuclear beta-catenin functionally compete for Tcf binding to influence activation of the endomesoderm gene regulatory network in the sea urchin embryo.
    Range RC; Venuti JM; McClay DR
    Dev Biol; 2005 Mar; 279(1):252-67. PubMed ID: 15708573
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Early embryonic expression of a LIM-homeobox gene Cs-lhx3 is downstream of beta-catenin and responsible for the endoderm differentiation in Ciona savignyi embryos.
    Satou Y; Imai KS; Satoh N
    Development; 2001 Sep; 128(18):3559-70. PubMed ID: 11566860
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Spatial expression of alpha and beta tubulin genes in the late embryogenesis of the sea urchin Paracentrotus lividus.
    Casano C; Ragusa M; Cutrera M; Costa S; Gianguzza F
    Int J Dev Biol; 1996 Oct; 40(5):1033-41. PubMed ID: 8946250
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Coquillette, a sea urchin T-box gene of the Tbx2 subfamily, is expressed asymmetrically along the oral-aboral axis of the embryo and is involved in skeletogenesis.
    Croce J; Lhomond G; Gache C
    Mech Dev; 2003 May; 120(5):561-72. PubMed ID: 12782273
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Spdeadringer, a sea urchin embryo gene required separately in skeletogenic and oral ectoderm gene regulatory networks.
    Amore G; Yavrouian RG; Peterson KJ; Ransick A; McClay DR; Davidson EH
    Dev Biol; 2003 Sep; 261(1):55-81. PubMed ID: 12941621
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Wnt-FoxQ2-nodal pathway links primary and secondary axis specification in sea urchin embryos.
    Yaguchi S; Yaguchi J; Angerer RC; Angerer LM
    Dev Cell; 2008 Jan; 14(1):97-107. PubMed ID: 18194656
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Tight regulation of SpSoxB factors is required for patterning and morphogenesis in sea urchin embryos.
    Kenny AP; Oleksyn DW; Newman LA; Angerer RC; Angerer LM
    Dev Biol; 2003 Sep; 261(2):412-25. PubMed ID: 14499650
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Regulation of early expression of Dlx3, a Xenopus anti-neural factor, by beta-catenin signaling.
    Beanan MJ; Feledy JA; Sargent TD
    Mech Dev; 2000 Mar; 91(1-2):227-35. PubMed ID: 10704847
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.