These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 10433832)

  • 61. Gene regulatory control in the sea urchin aboral ectoderm: spatial initiation, signaling inputs, and cell fate lockdown.
    Ben-Tabou de-Leon S; Su YH; Lin KT; Li E; Davidson EH
    Dev Biol; 2013 Feb; 374(1):245-54. PubMed ID: 23211652
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Short-range Wnt5 signaling initiates specification of sea urchin posterior ectoderm.
    McIntyre DC; Seay NW; Croce JC; McClay DR
    Development; 2013 Dec; 140(24):4881-9. PubMed ID: 24227654
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Highly restricted expression at the ectoderm-endoderm boundary of PIHbox 9, a sea urchin homeobox gene related to the human HB9 gene.
    Bellomonte D; Di Bernardo M ; Russo R; Caronia G; Spinelli G
    Mech Dev; 1998 Jun; 74(1-2):185-8. PubMed ID: 9651524
    [TBL] [Abstract][Full Text] [Related]  

  • 64. How to grow a gut: ontogeny of the endoderm in the sea urchin embryo.
    Wessel GM; Wikramanayake A
    Bioessays; 1999 Jun; 21(6):459-71. PubMed ID: 10402953
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Oral-aboral ectoderm differentiation of sea urchin embryos is disrupted in response to calcium ionophore.
    Akasaka K; Uemoto H; Wilt F; Mitsunaga-Nakatsubo K; Shimada H
    Dev Growth Differ; 1997 Jun; 39(3):373-9. PubMed ID: 9227904
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Ectoderm cell--ECM interaction is essential for sea urchin embryo skeletogenesis.
    Zito F; Tesoro V; McClay DR; Nakano E; Matranga V
    Dev Biol; 1998 Apr; 196(2):184-92. PubMed ID: 9576831
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Formation of multiple hearts in mice following deletion of beta-catenin in the embryonic endoderm.
    Lickert H; Kutsch S; Kanzler B; Tamai Y; Taketo MM; Kemler R
    Dev Cell; 2002 Aug; 3(2):171-81. PubMed ID: 12194849
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Activation of pmar1 controls specification of micromeres in the sea urchin embryo.
    Oliveri P; Davidson EH; McClay DR
    Dev Biol; 2003 Jun; 258(1):32-43. PubMed ID: 12781680
    [TBL] [Abstract][Full Text] [Related]  

  • 69. New regulatory circuit controlling spatial and temporal gene expression in the sea urchin embryo oral ectoderm GRN.
    Li E; Materna SC; Davidson EH
    Dev Biol; 2013 Oct; 382(1):268-79. PubMed ID: 23933172
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Role of the extracellular matrix in tissue-specific gene expression in the sea urchin embryo.
    Benson S; Rawson R; Killian C; Wilt F
    Mol Reprod Dev; 1991 Jul; 29(3):220-6. PubMed ID: 1931040
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Disruption of gastrulation and oral-aboral ectoderm differentiation in the Lytechinus pictus embryo by a dominant/negative PDGF receptor.
    Ramachandran RK; Wikramanayake AH; Uzman JA; Govindarajan V; Tomlinson CR
    Development; 1997 Jun; 124(12):2355-64. PubMed ID: 9199362
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Cis-regulatory control of the nodal gene, initiator of the sea urchin oral ectoderm gene network.
    Nam J; Su YH; Lee PY; Robertson AJ; Coffman JA; Davidson EH
    Dev Biol; 2007 Jun; 306(2):860-9. PubMed ID: 17451671
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Ca²⁺ influx-linked protein kinase C activity regulates the β-catenin localization, micromere induction signalling and the oral-aboral axis formation in early sea urchin embryos.
    Yazaki I; Tsurugaya T; Santella L; Chun JT; Amore G; Kusunoki S; Asada A; Togo T; Akasaka K
    Zygote; 2015 Jun; 23(3):426-46. PubMed ID: 24717667
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Autonomous and non-autonomous differentiation of ectoderm in different sea urchin species.
    Wikramanayake AH; Brandhorst BP; Klein WH
    Development; 1995 May; 121(5):1497-505. PubMed ID: 7789279
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Distal cis-acting elements restrict expression of the CyIIIb actin gene in the aboral ectoderm of the sea urchin embryo.
    Xu N; Niemeyer CC; Gonzalez-Rimbau M; Bogosian EA; Flytzanis CN
    Mech Dev; 1996 Dec; 60(2):151-62. PubMed ID: 9025068
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Spatially restricted expression of PlOtp, a Paracentrotus lividus orthopedia-related homeobox gene, is correlated with oral ectodermal patterning and skeletal morphogenesis in late-cleavage sea urchin embryos.
    Di Bernardo M; Castagnetti S; Bellomonte D; Oliveri P; Melfi R; Palla F; Spinelli G
    Development; 1999 May; 126(10):2171-9. PubMed ID: 10207142
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Encoding regulatory state boundaries in the pregastrular oral ectoderm of the sea urchin embryo.
    Li E; Cui M; Peter IS; Davidson EH
    Proc Natl Acad Sci U S A; 2014 Mar; 111(10):E906-13. PubMed ID: 24556994
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Requirement for beta-catenin in anterior-posterior axis formation in mice.
    Huelsken J; Vogel R; Brinkmann V; Erdmann B; Birchmeier C; Birchmeier W
    J Cell Biol; 2000 Feb; 148(3):567-78. PubMed ID: 10662781
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A tissue-specific repressor in the sea urchin embryo of Lytechinus pictus binds the distal G-string element in the LpS1-beta promoter.
    Seid CA; Sater AK; Falzone RL; Tomlinson CR
    DNA Cell Biol; 1996 Jun; 15(6):511-7. PubMed ID: 8672248
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Differential stability of beta-catenin along the animal-vegetal axis of the sea urchin embryo mediated by dishevelled.
    Weitzel HE; Illies MR; Byrum CA; Xu R; Wikramanayake AH; Ettensohn CA
    Development; 2004 Jun; 131(12):2947-56. PubMed ID: 15151983
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.