These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 10433835)

  • 1. Fate mapping of Drosophila embryonic mitotic domain 20 reveals that the larval visual system is derived from a subdomain of a few cells.
    Namba R; Minden JS
    Dev Biol; 1999 Aug; 212(2):465-76. PubMed ID: 10433835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitotic domains reveal early commitment of cells in Drosophila embryos.
    Foe VE
    Development; 1989 Sep; 107(1):1-22. PubMed ID: 2516798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Opsins and cell fate in the Drosophila Bolwig organ: tricky lessons in homology inference.
    Friedrich M
    Bioessays; 2008 Oct; 30(10):980-93. PubMed ID: 18800378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoreceptor differentiation in Drosophila: from immature neurons to functional photoreceptors.
    Mollereau B; Domingos PM
    Dev Dyn; 2005 Mar; 232(3):585-92. PubMed ID: 15704118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photic input pathways that mediate the Drosophila larval response to light and circadian rhythmicity are developmentally related but functionally distinct.
    Hassan J; Iyengar B; Scantlebury N; Rodriguez Moncalvo V; Campos AR
    J Comp Neurol; 2005 Jan; 481(3):266-75. PubMed ID: 15593374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The embryonic development of the Drosophila visual system.
    Green P; Hartenstein AY; Hartenstein V
    Cell Tissue Res; 1993 Sep; 273(3):583-98. PubMed ID: 8402833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Larval and imaginal pathways in early development of Drosophila.
    Harbecke R; Meise M; Holz A; Klapper R; Naffin E; Nordhoff V; Janning W
    Int J Dev Biol; 1996 Feb; 40(1):197-204. PubMed ID: 8735929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. argos Is required for projection of photoreceptor axons during optic lobe development in Drosophila.
    Sawamoto K; Okabe M; Tanimura T; Hayashi S; Mikoshiba K; Okano H
    Dev Dyn; 1996 Feb; 205(2):162-71. PubMed ID: 8834476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of complex larval chemosensory organs into the adult nervous system of Drosophila.
    Gendre N; Lüer K; Friche S; Grillenzoni N; Ramaekers A; Technau GM; Stocker RF
    Development; 2004 Jan; 131(1):83-92. PubMed ID: 14645122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The control of cell fate in the embryonic visual system by atonal, tailless and EGFR signaling.
    Daniel A; Dumstrei K; Lengyel JA; Hartenstein V
    Development; 1999 Jul; 126(13):2945-54. PubMed ID: 10357938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organ specification-growth control connection: new in-sights from the Drosophila eye-antennal disc.
    Domínguez M; Casares F
    Dev Dyn; 2005 Mar; 232(3):673-84. PubMed ID: 15704149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metamorphosis of the central nervous system of Drosophila.
    Truman JW
    J Neurobiol; 1990 Oct; 21(7):1072-84. PubMed ID: 1979610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conserved role of the Vsx genes supports a monophyletic origin for bilaterian visual systems.
    Erclik T; Hartenstein V; Lipshitz HD; McInnes RR
    Curr Biol; 2008 Sep; 18(17):1278-87. PubMed ID: 18723351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of neural lineages derived from the sine oculis positive eye field of Drosophila.
    Chang T; Younossi-Hartenstein A; Hartenstein V
    Arthropod Struct Dev; 2003 Dec; 32(4):303-17. PubMed ID: 18089014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tracking down the "head blob": comparative analysis of wingless expression in the developing insect procephalon reveals progressive reduction of embryonic visual system patterning in higher insects.
    Liu Z; Yang X; Dong Y; Friedrich M
    Arthropod Struct Dev; 2006 Dec; 35(4):341-56. PubMed ID: 18089080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The extraretinal eyelet of Drosophila: development, ultrastructure, and putative circadian function.
    Helfrich-Förster C; Edwards T; Yasuyama K; Wisotzki B; Schneuwly S; Stanewsky R; Meinertzhagen IA; Hofbauer A
    J Neurosci; 2002 Nov; 22(21):9255-66. PubMed ID: 12417651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms underlying olfactory neuronal connectivity in Drosophila-the atonal lineage organizes the periphery while sensory neurons and glia pattern the olfactory lobe.
    Jhaveri D; Sen A; Rodrigues V
    Dev Biol; 2000 Oct; 226(1):73-87. PubMed ID: 10993675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular mechanism and evolutional significance of epithelial-mesenchymal interactions in the body- and tail-dependent metamorphic transformation of anuran larval skin.
    Yoshizato K
    Int Rev Cytol; 2007; 260():213-60. PubMed ID: 17482907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autoregulation of the Drosophila disconnected gene in the developing visual system.
    Lee KJ; Mukhopadhyay M; Pelka P; Campos AR; Steller H
    Dev Biol; 1999 Oct; 214(2):385-98. PubMed ID: 10525342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decapentaplegic head capsule mutations disrupt novel peripodial expression controlling the morphogenesis of the Drosophila ventral head.
    Stultz BG; Lee H; Ramon K; Hursh DA
    Dev Biol; 2006 Aug; 296(2):329-39. PubMed ID: 16814276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.