BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 10433836)

  • 41. The outflow tract of the heart is recruited from a novel heart-forming field.
    Mjaatvedt CH; Nakaoka T; Moreno-Rodriguez R; Norris RA; Kern MJ; Eisenberg CA; Turner D; Markwald RR
    Dev Biol; 2001 Oct; 238(1):97-109. PubMed ID: 11783996
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Epicardial-like cells on the distal arterial end of the cardiac outflow tract do not derive from the proepicardium but are derivatives of the cephalic pericardium.
    Pérez-Pomares JM; Phelps A; Sedmerova M; Wessels A
    Dev Dyn; 2003 May; 227(1):56-68. PubMed ID: 12701099
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Spatial distribution of "tissue-specific" antigens in the developing human heart and skeletal muscle. III. An immunohistochemical analysis of the distribution of the neural tissue antigen G1N2 in the embryonic heart; implications for the development of the atrioventricular conduction system.
    Wessels A; Vermeulen JL; Verbeek FJ; Virágh S; Kálmán F; Lamers WH; Moorman AF
    Anat Rec; 1992 Jan; 232(1):97-111. PubMed ID: 1536469
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Morphogenesis of human cardiac outflow.
    Thompson RP; Sumida H; Abercrombie V; Satow Y; Fitzharris TP; Okamoto N
    Anat Rec; 1985 Dec; 213(4):578-86, 538-9. PubMed ID: 4083538
    [TBL] [Abstract][Full Text] [Related]  

  • 45. BMP4 is required in the anterior heart field and its derivatives for endocardial cushion remodeling, outflow tract septation, and semilunar valve development.
    McCulley DJ; Kang JO; Martin JF; Black BL
    Dev Dyn; 2008 Nov; 237(11):3200-9. PubMed ID: 18924235
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Vangl2 acts via RhoA signaling to regulate polarized cell movements during development of the proximal outflow tract.
    Phillips HM; Murdoch JN; Chaudhry B; Copp AJ; Henderson DJ
    Circ Res; 2005 Feb; 96(3):292-9. PubMed ID: 15637299
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Initiation of apoptosis in the developing avian outflow tract myocardium.
    Rothenberg F; Hitomi M; Fisher SA; Watanabe M
    Dev Dyn; 2002 Apr; 223(4):469-82. PubMed ID: 11921336
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The development of septation in the four-chambered heart.
    Anderson RH; Spicer DE; Brown NA; Mohun TJ
    Anat Rec (Hoboken); 2014 Aug; 297(8):1414-29. PubMed ID: 24863187
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bone morphogenetic protein-2 can mediate myocardial regulation of atrioventricular cushion mesenchymal cell formation in mice.
    Sugi Y; Yamamura H; Okagawa H; Markwald RR
    Dev Biol; 2004 May; 269(2):505-18. PubMed ID: 15110716
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular regulation of atrioventricular valvuloseptal morphogenesis.
    Eisenberg LM; Markwald RR
    Circ Res; 1995 Jul; 77(1):1-6. PubMed ID: 7788867
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Spatiotemporal analysis of programmed cell death during mouse cardiac septation.
    Sharma PR; Anderson RH; Copp AJ; Henderson DJ
    Anat Rec A Discov Mol Cell Evol Biol; 2004 Apr; 277(2):355-69. PubMed ID: 15052663
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multiple glycoproteins localize to a particulate form of extracellular matrix in regions of the embryonic heart where endothelial cells transform into mesenchyme.
    Sinning AR; Krug EL; Markwald RR
    Anat Rec; 1992 Feb; 232(2):285-92. PubMed ID: 1546806
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Expression and function of bone morphogenetic proteins in the development of the embryonic endocardial cushions.
    Keyes WM; Logan C; Parker E; Sanders EJ
    Anat Embryol (Berl); 2003 Sep; 207(2):135-47. PubMed ID: 12905017
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Left and right ventricular contributions to the formation of the interventricular septum in the mouse heart.
    Franco D; Meilhac SM; Christoffels VM; Kispert A; Buckingham M; Kelly RG
    Dev Biol; 2006 Jun; 294(2):366-75. PubMed ID: 16677630
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cardiac outflow tract malformations in chick embryos exposed to homocysteine.
    Boot MJ; Steegers-Theunissen RP; Poelmann RE; van Iperen L; Gittenberger-de Groot AC
    Cardiovasc Res; 2004 Nov; 64(2):365-73. PubMed ID: 15485697
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Spatiotemporal and tissue specific distribution of apoptosis in the developing chick heart.
    Cheng G; Wessels A; Gourdie RG; Thompson RP
    Dev Dyn; 2002 Jan; 223(1):119-33. PubMed ID: 11803575
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Role of the left interventricular sulcus in formation of interventricular septum and crista supraventricularis in normal human cardiogenesis.
    Meredith MA; Hutchins GM; Moore GW
    Anat Rec; 1979 Jul; 194(3):417-28. PubMed ID: 475007
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Morphogenesis of the truncus arteriosus of the chick embryo heart: tissue reorganization during septation.
    Thompson RP; Fitzharris TP
    Am J Anat; 1979 Oct; 156(2):251-64. PubMed ID: 506953
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Myocardial volume and organization are changed by failure of addition of secondary heart field myocardium to the cardiac outflow tract.
    Yelbuz TM; Waldo KL; Zhang X; Zdanowicz M; Parker J; Creazzo TL; Johnson GA; Kirby ML
    Dev Dyn; 2003 Oct; 228(2):152-60. PubMed ID: 14517987
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Septation and valvar formation in the outflow tract of the embryonic chick heart.
    Qayyum SR; Webb S; Anderson RH; Verbeek FJ; Brown NA; Richardson MK
    Anat Rec; 2001 Nov; 264(3):273-83. PubMed ID: 11596009
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.