These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 10434019)

  • 1. Optical recording of cortical activity after in vitro perfusion of cerebral arteries with a voltage-sensitive dye.
    de Curtis M; Takashima I; Iijima T
    Brain Res; 1999 Aug; 837(1-2):314-9. PubMed ID: 10434019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping patterns of neuronal activity and seizure propagation by imaging intrinsic optical signals in the isolated whole brain of the guinea-pig.
    Federico P; Borg SG; Salkauskus AG; MacVicar BA
    Neuroscience; 1994 Feb; 58(3):461-80. PubMed ID: 8170533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Convergence of olfactory and gustatory connections onto the endopiriform nucleus in the rat.
    Fu W; Sugai T; Yoshimura H; Onoda N
    Neuroscience; 2004; 126(4):1033-41. PubMed ID: 15207336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Olfactory input to the parahippocampal region of the isolated guinea pig brain reveals weak entorhinal-to-perirhinal interactions.
    Biella GR; Gnatkovsky V; Takashima I; Kajiwara R; Iijima T; de Curtis M
    Eur J Neurosci; 2003 Jul; 18(1):95-101. PubMed ID: 12859341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signal propagation from piriform cortex to the endopiriform nucleus in vitro revealed by optical imaging.
    Sugitani M; Sugai T; Tanifuji M; Onoda N
    Neurosci Lett; 1994 Apr; 171(1-2):175-8. PubMed ID: 8084485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Olfactory information converges in the amygdaloid cortex via the piriform and entorhinal cortices: observations in the guinea pig isolated whole-brain preparation.
    Kajiwara R; Tominaga T; Takashima I
    Eur J Neurosci; 2007 Jun; 25(12):3648-58. PubMed ID: 17610584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical imaging of the in vitro guinea pig piriform cortex activity using a voltage-sensitive dye.
    Sugitani M; Sugai T; Tanifuji M; Murase K; Onoda N
    Neurosci Lett; 1994 Jan; 165(1-2):215-8. PubMed ID: 7912419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions between associative synaptic potentials in the piriform cortex of the in vitro isolated guinea pig brain.
    Biella G; Panzica F; de Curtis M
    Eur J Neurosci; 1996 Jul; 8(7):1350-7. PubMed ID: 8758942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Associative synaptic potentials in the piriform cortex of the isolated guinea-pig brain in vitro.
    Biella G; de Curtis M
    Eur J Neurosci; 1995 Jan; 7(1):54-64. PubMed ID: 7711937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Olfactory bulb networks revealed by lateral olfactory tract stimulation in the in vitro isolated guinea-pig brain.
    Uva L; Strowbridge BW; de Curtis M
    Neuroscience; 2006 Oct; 142(2):567-77. PubMed ID: 16887275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The electrophysiology of the olfactory-hippocampal circuit in the isolated and perfused adult mammalian brain in vitro.
    de Curtis M; Paré D; Llinás RR
    Hippocampus; 1991 Oct; 1(4):341-54. PubMed ID: 1669314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of association fiber system in piriform cortex with intracellular recording and staining techniques.
    Haberly LB; Bower JM
    J Neurophysiol; 1984 Jan; 51(1):90-112. PubMed ID: 6319624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution of the olfactory fiber input into the olfactory tubercle of the in vitro isolated guinea pig brain.
    Carriero G; Uva L; Gnatkovsky V; de Curtis M
    J Neurophysiol; 2009 Mar; 101(3):1613-9. PubMed ID: 18922946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Salamander olfactory bulb neuronal activity observed by video rate, voltage-sensitive dye imaging. II. Spatial and temporal properties of responses evoked by electric stimulation.
    Cinelli AR; Kauer JS
    J Neurophysiol; 1995 May; 73(5):2033-52. PubMed ID: 7623098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple site optical recording of transmembrane voltage (MSORTV), single-unit recordings, and evoked field potentials from the olfactory bulb of skate (Raja erinacea).
    Cinelli AR; Salzberg BM
    J Neurophysiol; 1990 Dec; 64(6):1767-90. PubMed ID: 1981575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Olfactory inputs activate the medial entorhinal cortex via the hippocampus.
    Biella G; de Curtis M
    J Neurophysiol; 2000 Apr; 83(4):1924-31. PubMed ID: 10758103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical measurements of synchronized activity in isolated mammalian cerebellum.
    Cohen D; Yarom Y
    Neuroscience; 1999; 94(3):859-66. PubMed ID: 10579576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-course of declining electrical activity in guinea-pig olfactory cortex after olfactory bulb removal.
    Scholfield CN
    Neurosci Lett; 1980 Oct; 19(3):297-301. PubMed ID: 7052535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Entorhinal cortex stimulation modulates amygdala and piriform cortex responses to olfactory bulb inputs in the rat.
    Mouly AM; Di Scala G
    Neuroscience; 2006; 137(4):1131-41. PubMed ID: 16325349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origin of the in vivo rat piriform cortex activity recorded with voltage-sensitive dyes: comparison of the optical signals and the field potentials.
    Litaudon P; Cattarelli M
    Brain Res; 1992 Oct; 594(1):171-5. PubMed ID: 1467937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.