These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 10434390)

  • 1. Computational nature of human adaptive control during learning of reaching movements in force fields.
    Bhushan N; Shadmehr R
    Biol Cybern; 1999 Jul; 81(1):39-60. PubMed ID: 10434390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive representation of dynamics during learning of a motor task.
    Shadmehr R; Mussa-Ivaldi FA
    J Neurosci; 1994 May; 14(5 Pt 2):3208-24. PubMed ID: 8182467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning the dynamics of reaching movements results in the modification of arm impedance and long-latency perturbation responses.
    Wang T; Dordevic GS; Shadmehr R
    Biol Cybern; 2001 Dec; 85(6):437-48. PubMed ID: 11762234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Limb motion dictates how motor learning arises from arbitrary environmental dynamics.
    Sing GC; Orozco SP; Smith MA
    J Neurophysiol; 2013 May; 109(10):2466-82. PubMed ID: 23365184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptation to stable and unstable dynamics achieved by combined impedance control and inverse dynamics model.
    Franklin DW; Osu R; Burdet E; Kawato M; Milner TE
    J Neurophysiol; 2003 Nov; 90(5):3270-82. PubMed ID: 14615432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different mechanisms involved in adaptation to stable and unstable dynamics.
    Osu R; Burdet E; Franklin DW; Milner TE; Kawato M
    J Neurophysiol; 2003 Nov; 90(5):3255-69. PubMed ID: 14615431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel model of motor learning capable of developing an optimal movement control law online from scratch.
    Shimansky YP; Kang T; He J
    Biol Cybern; 2004 Feb; 90(2):133-45. PubMed ID: 14999480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mathematical model of the adaptive control of human arm motions.
    Sanner RM; Kosha M
    Biol Cybern; 1999 May; 80(5):369-82. PubMed ID: 10365428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manipulating objects with internal degrees of freedom: evidence for model-based control.
    Dingwell JB; Mah CD; Mussa-Ivaldi FA
    J Neurophysiol; 2002 Jul; 88(1):222-35. PubMed ID: 12091548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of interaction force levels on degree of motor adaptation in a stable dynamic force field.
    Lai EJ; Hodgson AJ; Milner TE
    Exp Brain Res; 2003 Nov; 153(1):76-83. PubMed ID: 12955384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlations in state space can cause sub-optimal adaptation of optimal feedback control models.
    Aprasoff J; Donchin O
    J Comput Neurosci; 2012 Apr; 32(2):297-307. PubMed ID: 21792671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning arm kinematics and dynamics.
    Atkeson CG
    Annu Rev Neurosci; 1989; 12():157-83. PubMed ID: 2648948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Force adaptation transfers to untrained workspace regions in children: evidence for developing inverse dynamic motor models.
    Jansen-Osmann P; Richter S; Konczak J; Kalveram KT
    Exp Brain Res; 2002 Mar; 143(2):212-20. PubMed ID: 11880897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulating closed- and open-loop voluntary movement: a nonlinear control-systems approach.
    Davidson PR; Jones RD; Andreae JH; Sirisena HR
    IEEE Trans Biomed Eng; 2002 Nov; 49(11):1242-52. PubMed ID: 12450354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple timescales in the adaptation of the rotational VOR.
    Colagiorgio P; Bertolini G; Bockisch CJ; Straumann D; Ramat S
    J Neurophysiol; 2015 May; 113(9):3130-42. PubMed ID: 25744882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concurrent adaptation of force and impedance in the redundant muscle system.
    Tee KP; Franklin DW; Kawato M; Milner TE; Burdet E
    Biol Cybern; 2010 Jan; 102(1):31-44. PubMed ID: 19936778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence, time, or state representation: how does the motor control system adapt to variable environments?
    Karniel A; Mussa-Ivaldi FA
    Biol Cybern; 2003 Jul; 89(1):10-21. PubMed ID: 12836029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional significance of stiffness in adaptation of multijoint arm movements to stable and unstable dynamics.
    Franklin DW; Burdet E; Osu R; Kawato M; Milner TE
    Exp Brain Res; 2003 Jul; 151(2):145-57. PubMed ID: 12783150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robot-assisted adaptive training: custom force fields for teaching movement patterns.
    Patton JL; Mussa-Ivaldi FA
    IEEE Trans Biomed Eng; 2004 Apr; 51(4):636-46. PubMed ID: 15072218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning and generation of goal-directed arm reaching from scratch.
    Kambara H; Kim K; Shin D; Sato M; Koike Y
    Neural Netw; 2009 May; 22(4):348-61. PubMed ID: 19121565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.