BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 10435006)

  • 1. Mitochondrial metabolism of pyruvate is required for its enhancement of cardiac function and energetics.
    Mallet RT; Sun J
    Cardiovasc Res; 1999 Apr; 42(1):149-61. PubMed ID: 10435006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energetic modulation of cardiac inotropism and sarcoplasmic reticular Ca2+ uptake.
    Mallet RT; Bünger R
    Biochim Biophys Acta; 1994 Oct; 1224(1):22-32. PubMed ID: 7948040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial pyruvate transport in working guinea-pig heart. Work-related vs. carrier-mediated control of pyruvate oxidation.
    Bünger R; Mallet RT
    Biochim Biophys Acta; 1993 Sep; 1151(2):223-36. PubMed ID: 8104034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyruvate modulates cardiac sarcoplasmic reticulum Ca2+ release in rats via mitochondria-dependent and -independent mechanisms.
    Zima AV; Kockskämper J; Mejia-Alvarez R; Blatter LA
    J Physiol; 2003 Aug; 550(Pt 3):765-83. PubMed ID: 12824454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyruvate augments calcium transients and cell shortening in rat ventricular myocytes.
    Martin BJ; Valdivia HH; Bünger R; Lasley RD; Mentzer RM
    Am J Physiol; 1998 Jan; 274(1):H8-17. PubMed ID: 9458846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pyruvate-enhanced phosphorylation potential and inotropism in normoxic and postischemic isolated working heart. Near-complete prevention of reperfusion contractile failure.
    Bünger R; Mallet RT; Hartman DA
    Eur J Biochem; 1989 Mar; 180(1):221-33. PubMed ID: 2707262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pyruvate enhancement of cardiac performance: Cellular mechanisms and clinical application.
    Mallet RT; Olivencia-Yurvati AH; Bünger R
    Exp Biol Med (Maywood); 2018 Jan; 243(2):198-210. PubMed ID: 29154687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prevention of endotoxin-induced sarcoplasmic reticulum calcium leak improves mitochondrial and myocardial dysfunction.
    Hassoun SM; Marechal X; Montaigne D; Bouazza Y; Decoster B; Lancel S; Neviere R
    Crit Care Med; 2008 Sep; 36(9):2590-6. PubMed ID: 18679108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antioxidant pyruvate inhibits cardiac formation of reactive oxygen species through changes in redox state.
    Bassenge E; Sommer O; Schwemmer M; Bünger R
    Am J Physiol Heart Circ Physiol; 2000 Nov; 279(5):H2431-8. PubMed ID: 11045981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of substrate on mitochondrial NADH, cytosolic redox state, and phosphorylated compounds in isolated hearts.
    Scholz TD; Laughlin MR; Balaban RS; Kupriyanov VV; Heineman FW
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H82-91. PubMed ID: 7840306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of the positive inotropic effect of pyruvate by energetic substrate availability.
    Leite-Moreira AF; Castro-Chaves P; Roncon-Albuquerque R; Guerra MS; Lima-Carneiro A
    Acta Cardiol; 2003 Dec; 58(6):519-25. PubMed ID: 14713177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyruvate restores contractile function and antioxidant defenses of hydrogen peroxide-challenged myocardium.
    Mallet RT; Squires JE; Bhatia S; Sun J
    J Mol Cell Cardiol; 2002 Sep; 34(9):1173-84. PubMed ID: 12392891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial and cytosolic calcium in rat hearts under high-K(+) cardioplegia and pyruvate: mechano-energetic performance.
    Consolini AE; Ragone MI; Bonazzola P
    Can J Physiol Pharmacol; 2011 Jul; 89(7):485-96. PubMed ID: 21812526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucose requirement for postischemic recovery of perfused working heart.
    Mallet RT; Hartman DA; Bünger R
    Eur J Biochem; 1990 Mar; 188(2):481-93. PubMed ID: 2318214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interrelationships between glucose metabolism, energy state, and the cytosolic free calcium concentration in cortical synaptosomes from the guinea pig.
    Kauppinen RA; Taipale HT; Komulainen H
    J Neurochem; 1989 Sep; 53(3):766-71. PubMed ID: 2503588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pyruvate: metabolic protector of cardiac performance.
    Mallet RT
    Proc Soc Exp Biol Med; 2000 Feb; 223(2):136-48. PubMed ID: 10654616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of the Ca2+ gradient across the sarcoplasmic reticulum in perfused rabbit heart. A 19F nuclear magnetic resonance study.
    Chen W; London R; Murphy E; Steenbergen C
    Circ Res; 1998 Nov; 83(9):898-907. PubMed ID: 9797338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defective sarcoplasmic reticulum-mitochondria calcium exchange in aged mouse myocardium.
    Fernandez-Sanz C; Ruiz-Meana M; Miro-Casas E; Nuñez E; Castellano J; Loureiro M; Barba I; Poncelas M; Rodriguez-Sinovas A; Vázquez J; Garcia-Dorado D
    Cell Death Dis; 2014 Dec; 5(12):e1573. PubMed ID: 25522267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antioxidant properties of pyruvate mediate its potentiation of beta-adrenergic inotropism in stunned myocardium.
    Tejero-Taldo MI; Caffrey JL; Sun J; Mallet RT
    J Mol Cell Cardiol; 1999 Oct; 31(10):1863-72. PubMed ID: 10525424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pyruvate reverses fatty-acid-induced depression of ventricular function and calcium overload after hypothermia in guinea pig hearts.
    Aasum E; Larsen TS
    Cardiovasc Res; 1997 Feb; 33(2):370-7. PubMed ID: 9074701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.