BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 10435014)

  • 21. Inhibitory effects of brefeldin A, a membrane transport blocker, on the bradykinin-induced hyperpolarization-mediated relaxation in the porcine coronary artery.
    Ohnishi Y; Hirano K; Nishimura J; Furue M; Kanaide H
    Br J Pharmacol; 2001 Sep; 134(1):168-78. PubMed ID: 11522609
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Potentiation of endothelium-dependent relaxation by epoxyeicosatrienoic acids.
    Weintraub NL; Fang X; Kaduce TL; VanRollins M; Chatterjee P; Spector AA
    Circ Res; 1997 Aug; 81(2):258-67. PubMed ID: 9242187
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of progesterone and estrogen on endothelial dysfunction in porcine coronary arteries.
    Cox MW; Fu W; Chai H; Paladugu R; Lin PH; Lumsden AB; Yao Q; Chen C
    J Surg Res; 2005 Mar; 124(1):104-11. PubMed ID: 15734487
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tamoxifen acutely relaxes coronary arteries by an endothelium-, nitric oxide-, and estrogen receptor-dependent mechanism.
    Figtree GA; Webb CM; Collins P
    J Pharmacol Exp Ther; 2000 Nov; 295(2):519-23. PubMed ID: 11046084
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Homocysteine decreases endothelium-dependent vasorelaxation in porcine arteries.
    Chen C; Conklin BS; Ren Z; Zhong DS
    J Surg Res; 2002 Jan; 102(1):22-30. PubMed ID: 11792147
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pharmacological reactivity of human epicardial coronary arteries: characterization of relaxation responses to endothelium-derived relaxing factor.
    Stork AP; Cocks TM
    Br J Pharmacol; 1994 Dec; 113(4):1099-104. PubMed ID: 7889260
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Acute exposure to a low level of testosterone impairs relaxation in porcine coronary arteries.
    Quan A; Teoh H; Man RY
    Clin Exp Pharmacol Physiol; 1999 Oct; 26(10):830-2. PubMed ID: 10549414
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Time dependence of endothelium-mediated vasodilation by intermittent antegrade warm blood cardioplegia.
    Curro D; Bombardieri G; Barilaro C; Di Francesco P; Varano C; Possati G; Pragliola C
    Ann Thorac Surg; 1997 Nov; 64(5):1354-9. PubMed ID: 9386704
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Insurmountable antagonism of AT-1015, a 5-HT2 antagonist, on serotonin-induced endothelium-dependent relaxation in porcine coronary artery.
    Rashid M; Nakazawa M; Nagatomo T
    J Pharm Pharmacol; 2003 Jun; 55(6):827-32. PubMed ID: 12841944
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coronary microvascular responses after exposure to iodinated contrast media.
    Piana RN; Banitt PF; Nunez BN; Dai HB; Sellke FW
    Invest Radiol; 1994 Oct; 29(10):877-81. PubMed ID: 7852038
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanism of trypsin-induced endothelium-dependent vasorelaxation in the porcine coronary artery.
    Nakayama T; Hirano K; Nishimura J; Takahashi S; Kanaide H
    Br J Pharmacol; 2001 Oct; 134(4):815-26. PubMed ID: 11606322
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of myoendothelial cell contact in non-nitric oxide-, non-prostanoid-mediated endothelium-dependent relaxation of porcine coronary artery.
    Kühberger E; Groschner K; Kukovetz WR; Brunner F
    Br J Pharmacol; 1994 Dec; 113(4):1289-94. PubMed ID: 7889285
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nongenomic responses to 17beta-estradiol in male rat mesenteric arteries abolish intrinsic gender differences in vascular responses.
    Keung W; Vanhoutte PM; Man RY
    Br J Pharmacol; 2005 Dec; 146(8):1148-55. PubMed ID: 16231002
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thimerosal blocks stimulated but not basal release of endothelium-derived relaxing factor (EDRF) in dog isolated coronary artery.
    Crack P; Cocks T
    Br J Pharmacol; 1992 Oct; 107(2):566-72. PubMed ID: 1384915
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pharmacological studies on the inhibitory action of melatonin and putative melatonin analogues on porcine vascular smooth muscle.
    Ting N; Thambyraja A; Sugden D; Scalbert E; Delagrange P; Wilson VG
    Naunyn Schmiedebergs Arch Pharmacol; 2000 Mar; 361(3):327-33. PubMed ID: 10731047
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of calcium-activated potassium channels with small conductance in bradykinin-induced vasodilation of porcine retinal arterioles.
    Dalsgaard T; Kroigaard C; Bek T; Simonsen U
    Invest Ophthalmol Vis Sci; 2009 Aug; 50(8):3819-25. PubMed ID: 19255162
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Smooth muscle mediates circumferential conduction of hyperpolarization and relaxation to focal endothelial cell activation in large coronary arteries.
    Selemidis S; Cocks T
    Naunyn Schmiedebergs Arch Pharmacol; 2007 Apr; 375(2):85-94. PubMed ID: 17340126
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of sex and estrogen on chicken ductus arteriosus reactivity.
    Flinsenberg TW; van der Sterren S; van Cleef AN; Schuurman MJ; Agren P; Villamor E
    Am J Physiol Regul Integr Comp Physiol; 2010 May; 298(5):R1217-24. PubMed ID: 20164203
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regional differences in endothelium-dependent relaxation in the rat: contribution of nitric oxide and nitric oxide-independent mechanisms.
    Zygmunt PM; Ryman T; Högestätt ED
    Acta Physiol Scand; 1995 Nov; 155(3):257-66. PubMed ID: 8619323
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vitro modulation of primate coronary vascular muscle cell reactivity by ovarian steroid hormones.
    Minshall RD; Miyagawa K; Chadwick CC; Novy MJ; Hermsmeyer K
    FASEB J; 1998 Oct; 12(13):1419-29. PubMed ID: 9761786
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.