BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 10435342)

  • 1. Screening for chloramphenicol residues in the tissues and fluids of treated cattle by the four plate test, Charm II radioimmunoassay and Ridascreen CAP-Glucuronid enzyme immunoassay.
    Lynas L; Currie D; Elliott CT; McEvoy JD; Hewitt SA
    Analyst; 1998 Dec; 123(12):2773-7. PubMed ID: 10435342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chloramphenicol residues in chicken liver, kidney and muscle: a comparison among the antibacterial residues monitoring methods of Four Plate Test, ELISA and HPLC.
    Tajik H; Malekinejad H; Razavi-Rouhani SM; Pajouhi MR; Mahmoudi R; Haghnazari A
    Food Chem Toxicol; 2010; 48(8-9):2464-8. PubMed ID: 20600543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Screening of stereoisomeric chloramphenicol residues in honey by ELISA and CHARM ® II test - the potential risk of systematically false-compliant (false negative) results.
    Rimkus GG; Huth T; Harms D
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2020 Jan; 37(1):94-103. PubMed ID: 31697202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liquid chromatographic determination of chloramphenicol in calf tissues: studies of stability in muscle, kidney, and liver.
    Sanders P; Guillot P; Dagorn M; Delmas JM
    J Assoc Off Anal Chem; 1991; 74(3):483-6. PubMed ID: 1874692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of Charm Test II receptor assays for the detection of antimicrobial residues in suspect meat samples.
    Korsrud GO; Salisbury CD; Fesser AC; MacNeil JD
    Analyst; 1994 Dec; 119(12):2737-41. PubMed ID: 7879886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of three different microbial inhibition tests for the detection of sulphamethazine residues in the edible tissues of rabbit.
    Kozárová I; Janosová J; Máté D; Tkáciková S
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2009 Jul; 26(7):978-87. PubMed ID: 19680973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Behavior of chloramphenicol residues following intramuscular administration in swine].
    Boertz AK; Arnold D; Somogyi A
    Z Ernahrungswiss; 1985 Jun; 24(2):113-9. PubMed ID: 4049951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of a radioimmunoassay (Charm II) test with high-performance liquid chromatography for detection of oxytetracycline residues in milk samples from lactating cattle.
    Moats WA; Anderson KL; Rushing JE; Wesen DP
    Am J Vet Res; 1995 Jun; 56(6):795-800. PubMed ID: 7653890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis and monitoring of chloramphenicol residues in food of animal origin in Slovenia from 1991 to 2000.
    Cerkvenik V
    Food Addit Contam; 2002 Apr; 19(4):357-67. PubMed ID: 11962693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Residues of Ractopamine and Identification of its Glucuronide Metabolites in Plasma, Urine, and Tissues of Cattle.
    Tang C; Liang X; Zhang K; Zhao Q; Meng Q; Zhang J
    J Anal Toxicol; 2016 Nov; 40(9):738-743. PubMed ID: 27474363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study of chloramphenicol distribution and residues in dairy cows.
    Nouws JF; Ziv G
    Tijdschr Diergeneeskd; 1978 Jul; 103(14):725-35. PubMed ID: 675643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Determination of chloropromazine residues in animals kidney and urine using LC-MS/MS method].
    Rodziewicz L; Zawadzka I
    Rocz Panstw Zakl Hig; 2007; 58(3):503-8. PubMed ID: 18246654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Residues from long-acting antimicrobial preparations in injection sites in cattle.
    Mawhinney H; Oakenfull SM; Nicholls TJ
    Aust Vet J; 1996 Aug; 74(2):140-2. PubMed ID: 8894021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Depletion of chloramphenicol in trout after a hypothetic therapeutic treatment.
    Biancotto G; Contiero L; Benetti C; Calligaris M; Tibaldi E; Cerni L; Francese M
    Anal Chim Acta; 2009 Apr; 637(1-2):173-7. PubMed ID: 19286026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of LC-MS/MS methodology for the detection/determination and confirmation of chloramphenicol, chloramphenicol 3-O-β-d-glucuronide, florfenicol, florfenicol amine and thiamphenicol residues in bovine, equine and porcine liver.
    Fedeniuk RW; Mizuno M; Neiser C; O'Byrne C
    J Chromatogr B Analyt Technol Biomed Life Sci; 2015 Jun; 991():68-78. PubMed ID: 25913426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of chloramphenicol residues in commercial chicken eggs in the Federal Capital Territory, Abuja, Nigeria.
    Mbodi FE; Nguku P; Okolocha E; Kabir J
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2014; 31(11):1834-9. PubMed ID: 25208093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enantioselective analysis of chloramphenicol residues in honey samples by chiral LC-MS/MS and results of a honey survey.
    Rimkus GG; Hoffmann D
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2017 Jun; 34(6):950-961. PubMed ID: 28406359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An aptamer-based effective method for highly sensitive detection of chloramphenicol residues in animal-sourced food using real-time fluorescent quantitative PCR.
    Duan Y; Wang L; Gao Z; Wang H; Zhang H; Li H
    Talanta; 2017 Apr; 165():671-676. PubMed ID: 28153315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A microtitre plate assay for the detection of antibiotics in porcine urine.
    Buick RK; Greer NM; Elliott CT
    Analyst; 2000 Mar; 125(3):395-6. PubMed ID: 10829338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial inhibition tests used to screen for antimicrobial veterinary drug residues in slaughtered animals.
    Korsrud GO; Boison JO; Nouws JF; MacNeil JD
    J AOAC Int; 1998; 81(1):21-4. PubMed ID: 9477558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.