These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 10436061)

  • 21. Growth cone-target interactions in the frog retinotectal pathway.
    Reh TA; Constantine-Paton M
    J Neurosci Res; 1985; 13(1-2):89-100. PubMed ID: 2983078
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Presynaptic protein kinase C controls maturation and branch dynamics of developing retinotectal arbors: possible role in activity-driven sharpening.
    Schmidt JT; Fleming MR; Leu B
    J Neurobiol; 2004 Feb; 58(3):328-40. PubMed ID: 14750146
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cell-autonomous TrkB signaling in presynaptic retinal ganglion cells mediates axon arbor growth and synapse maturation during the establishment of retinotectal synaptic connectivity.
    Marshak S; Nikolakopoulou AM; Dirks R; Martens GJ; Cohen-Cory S
    J Neurosci; 2007 Mar; 27(10):2444-56. PubMed ID: 17344382
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Physiological effects of chronic and acute application of N-methyl-D-aspartate and 5-amino-phosphonovaleric acid to the optic tectum of Rana pipiens frogs.
    Udin SB; Scherer WJ; Constantine-Paton M
    Neuroscience; 1992 Aug; 49(3):739-47. PubMed ID: 1354340
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A banded distribution of retinal afferents within layer 9A of the normal frog optic tectum.
    Law MI; Constantine-Paton M
    Brain Res; 1982 Sep; 247(2):201-8. PubMed ID: 7127123
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The development of non-retinal afferent projections to the frog optic tectum and the substance P immunoreactivity of tectal connections.
    Debski EA; Constantine-Paton M
    Brain Res Dev Brain Res; 1993 Mar; 72(1):21-39. PubMed ID: 7680968
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chronic application of NMDA decreases the NMDA sensitivity of the evoked tectal potential in the frog.
    Debski EA; Cline HT; McDonald JW; Constantine-Paton M
    J Neurosci; 1991 Sep; 11(9):2947-57. PubMed ID: 1679126
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Normal activity-dependent refinement in a compressed retinotectal projection in goldfish.
    Olson MD; Meyer RL
    J Comp Neurol; 1994 Sep; 347(4):481-94. PubMed ID: 7529264
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Topographic map formation and the effects of NMDA receptor blockade in the developing visual system.
    Li VJ; Schohl A; Ruthazer ES
    Proc Natl Acad Sci U S A; 2022 Feb; 119(8):. PubMed ID: 35193956
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Map formation in the developing Xenopus retinotectal system: an examination of ganglion cell terminal arborizations.
    Sakaguchi DS; Murphey RK
    J Neurosci; 1985 Dec; 5(12):3228-45. PubMed ID: 3001241
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NOS inhibition during postnatal development leads to increased ipsilateral retinocollicular and retinogeniculate projections in rats.
    Vercelli A; Garbossa D; Biasiol S; Repici M; Jhaveri S
    Eur J Neurosci; 2000 Feb; 12(2):473-90. PubMed ID: 10712628
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of radial glial motility by visual experience.
    Tremblay M; Fugère V; Tsui J; Schohl A; Tavakoli A; Travençolo BA; Costa Lda F; Ruthazer ES
    J Neurosci; 2009 Nov; 29(45):14066-76. PubMed ID: 19906955
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Single retinal changing contrast (third) detector elicits NMDA receptor response and higher activity level of frog tectum neuron network.
    Kuras A; Baginskas A; Batuleviciene V; Lamanauskas N
    Exp Brain Res; 2007 May; 179(2):209-17. PubMed ID: 17136527
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrophysiological Approaches to Studying Normal and Abnormal Retinotectal Circuit Development in the
    Pratt KG
    Cold Spring Harb Protoc; 2021 Nov; 2021(11):. PubMed ID: 33536288
    [TBL] [Abstract][Full Text] [Related]  

  • 35. GABAergic visual pathways in the frog Rana pipiens.
    Li Z; Fite KV
    Vis Neurosci; 2001; 18(3):457-64. PubMed ID: 11497422
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Retinal ganglion cell terminals change their projection sites during larval development of Rana pipiens.
    Reh TA; Constantine-Paton M
    J Neurosci; 1984 Feb; 4(2):442-57. PubMed ID: 6607979
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The representation of the ipsilateral eye in nucleus isthmi of the leopard frog, Rana pipiens.
    Winkowski DE; Gruberg ER
    Vis Neurosci; 2002; 19(5):669-79. PubMed ID: 12507333
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plasticity in the tectum of Xenopus laevis: binocular maps.
    Udin SB; Grant S
    Prog Neurobiol; 1999 Oct; 59(2):81-106. PubMed ID: 10463791
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Segregation of optic fibre projections into eye-specific bands in dually innervated tecta in Xenopus.
    Straznicky C; Tay D; Hiscock J
    Neurosci Lett; 1980 Sep; 19(2):131-6. PubMed ID: 7052521
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Retinal specificity in eye fragments: investigations on the retinotectal projections of different quarter-eyes in Xenopus laevis.
    Brändle K; Degen N
    Exp Brain Res; 1994; 102(2):272-86. PubMed ID: 7705505
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.