BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 10436997)

  • 1. [Automated perimetry analysis of optic nerve compression caused by orbital tumors and tumor-like lesions].
    Wei R; Li Y; Zhou Y
    Zhonghua Yan Ke Za Zhi; 1997 Jan; 33(1):33-5. PubMed ID: 10436997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Management of optic neuropathy from an apical orbital-cavernous sinus hemangioma with radiotherapy.
    Wiwatwongwana D; Rootman J
    Orbit; 2008; 27(3):219-21. PubMed ID: 18569834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Analysis of 24 cases of misdiagnosed orbital tumors with visual impairment as the presenting symptom].
    Zhang CH
    Zhonghua Yan Ke Za Zhi; 1993 Jul; 29(4):238-40. PubMed ID: 8243199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orbital decompression as an alternative management strategy for patients with benign tumors located at the orbital apex.
    Kloek CE; Bilyk JR; Pribitkin EA; Rubin PA
    Ophthalmology; 2006 Jul; 113(7):1214-9. PubMed ID: 16815404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visual function-specific perimetry for indirect comparison of different ganglion cell populations in glaucoma.
    Sample PA; Bosworth CF; Blumenthal EZ; Girkin C; Weinreb RN
    Invest Ophthalmol Vis Sci; 2000 Jun; 41(7):1783-90. PubMed ID: 10845599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Annual review of section on ocular disease: diseases of the optic nerve, tracts, and visual cortex.
    Williams TD
    Am J Optom Physiol Opt; 1980 Jan; 57(1):33-47. PubMed ID: 6155071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation of the multifocal visual evoked potential and standard automated perimetry in compressive optic neuropathies.
    Danesh-Meyer HV; Carroll SC; Gaskin BJ; Gao A; Gamble GD
    Invest Ophthalmol Vis Sci; 2006 Apr; 47(4):1458-63. PubMed ID: 16565379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multifocal visual evoked potentials in unilateral compressive optic neuropathy secondary to orbital tumors.
    Xue K; Wang M; Qian J; Yuan Y; Zhang R
    Eur J Ophthalmol; 2013; 23(4):571-7. PubMed ID: 23483502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can frequency-doubling technology and short-wavelength automated perimetries detect visual field defects before standard automated perimetry in patients with preperimetric glaucoma?
    Ferreras A; Polo V; Larrosa JM; Pablo LE; Pajarin AB; Pueyo V; Honrubia FM
    J Glaucoma; 2007; 16(4):372-83. PubMed ID: 17571000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Association of optic disc configuration and clustered visual field sensitivity in glaucomatous eyes with hemifield visual field defects.
    Nagai-Kusuhara A; Nakamura M; Kanamori A; Negi A
    J Glaucoma; 2009 Jan; 18(1):62-8. PubMed ID: 19142137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Frequency-doubling perimetry in retrochiasmatic disorders].
    Cerio-Ramsden CD; Muñoz Negrete FJ; M Moro JG; Rebolleda G
    Arch Soc Esp Oftalmol; 2003 Mar; 78(3):143-9. PubMed ID: 12677491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gamma knife radiosurgery for orbital tumors.
    Kim MS; Park K; Kim JH; Kim YD; Lee JI
    Clin Neurol Neurosurg; 2008 Dec; 110(10):1003-7. PubMed ID: 18653273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical variables associated with glaucomatous injury in eyes with large optic disc cupping.
    Greenfield DS; Bagga H
    Ophthalmic Surg Lasers Imaging; 2005; 36(5):401-9. PubMed ID: 16238039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glaucomatous visual field progression with frequency-doubling technology and standard automated perimetry in a longitudinal prospective study.
    Haymes SA; Hutchison DM; McCormick TA; Varma DK; Nicolela MT; LeBlanc RP; Chauhan BC
    Invest Ophthalmol Vis Sci; 2005 Feb; 46(2):547-54. PubMed ID: 15671281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Criteria for early detection of temporal hemianopia in asymptomatic pituitary tumor.
    Fujimoto N; Saeki N; Miyauchi O; Adachi-Usami E
    Eye (Lond); 2002 Nov; 16(6):731-8. PubMed ID: 12439668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Automated perimetry and neuro-ophthalmology. Topographic correlation].
    Muñoz Negrete FJ; Rebolleda G
    Arch Soc Esp Oftalmol; 2002 Aug; 77(8):413-28. PubMed ID: 12185617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repeatability of automated perimetry: a comparison between standard automated perimetry with stimulus size III and V, matrix, and motion perimetry.
    Wall M; Woodward KR; Doyle CK; Artes PH
    Invest Ophthalmol Vis Sci; 2009 Feb; 50(2):974-9. PubMed ID: 18952921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Early diagnosis of the tumors in orbital apex and optic nerve].
    Zhang CH; Zhang TC; Zhong JS; Li YW; Zhang CM
    Zhonghua Yan Ke Za Zhi; 2004 Jan; 40(1):34-6. PubMed ID: 14989958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Symptomatic compression of the optic nerve by the carotid artery: clinical profile of 18 patients with 24 affected eyes identified by magnetic resonance imaging.
    Jacobson DM
    Ophthalmology; 1999 Oct; 106(10):1994-2004. PubMed ID: 10519598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discordance between subjective perimetric visual fields and objective multifocal visual evoked potential-determined visual fields in patients with hemianopsia.
    Watanabe K; Shinoda K; Kimura I; Mashima Y; Oguchi Y; Ohde H
    Am J Ophthalmol; 2007 Feb; 143(2):295-304. PubMed ID: 17184719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.