BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 10437116)

  • 41. Regulation of cellular calcium through signaling cross-talk involves an intricate interplay between the actions of receptors, G-proteins, and second messengers.
    Bygrave FL; Roberts HR
    FASEB J; 1995 Oct; 9(13):1297-303. PubMed ID: 7557019
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sensorimotor Representations in Cerebellar Granule Cells in Larval Zebrafish Are Dense, Spatially Organized, and Non-temporally Patterned.
    Knogler LD; Markov DA; Dragomir EI; Štih V; Portugues R
    Curr Biol; 2017 May; 27(9):1288-1302. PubMed ID: 28434864
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cerebellar Granule Cells: Dense, Rich and Evolving Representations.
    Badura A; De Zeeuw CI
    Curr Biol; 2017 Jun; 27(11):R415-R418. PubMed ID: 28586665
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mechanisms of signal transduction at the dopamine D2 receptor.
    Vallar L; Meldolesi J
    Trends Pharmacol Sci; 1989 Feb; 10(2):74-7. PubMed ID: 2655242
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pharmacological basis for dopamine D-2 receptor diversity.
    Memo M; Pizzi M; Valerio A; Missale C; Carruba MO; Spano PF
    Neurochem Int; 1992 Mar; 20 Suppl():185S-187S. PubMed ID: 1365423
    [No Abstract]   [Full Text] [Related]  

  • 46. Adaptive Changes in the Central Control of Energy Homeostasis Occur in Response to Variations in Energy Status.
    Gastelum C; Perez L; Hernandez J; Le N; Vahrson I; Sayers S; Wagner EJ
    Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33800452
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Activation of PAC1 Receptors in Rat Cerebellar Granule Cells Stimulates Both Calcium Mobilization from Intracellular Stores and Calcium Influx through N-Type Calcium Channels.
    Basille-Dugay M; Vaudry H; Fournier A; Gonzalez B; Vaudry D
    Front Endocrinol (Lausanne); 2013; 4():56. PubMed ID: 23675369
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Role of PACAP in controlling granule cell migration.
    Cameron DB; Raoult E; Galas L; Jiang Y; Lee K; Hu T; Vaudry D; Komuro H
    Cerebellum; 2009 Dec; 8(4):433-40. PubMed ID: 19548046
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cerebellar cortical-layer-specific control of neuronal migration by pituitary adenylate cyclase-activating polypeptide.
    Cameron DB; Galas L; Jiang Y; Raoult E; Vaudry D; Komuro H
    Neuroscience; 2007 May; 146(2):697-712. PubMed ID: 17383102
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanism of dopamine mediated inhibition of neuropeptide Y release from pheochromocytoma cells (PC12 cells).
    Cao G; Gardner A; Westfall TC
    Biochem Pharmacol; 2007 May; 73(9):1446-54. PubMed ID: 17286966
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Class II G protein-coupled receptors and their ligands in neuronal function and protection.
    Martin B; Lopez de Maturana R; Brenneman R; Walent T; Mattson MP; Maudsley S
    Neuromolecular Med; 2005; 7(1-2):3-36. PubMed ID: 16052036
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Pituitary adenylate cyclase-activating polypeptide and PACAP receptor expression and function in the rat adrenal gland.
    Mazzocchi G; Malendowicz LK; Neri G; Andreis PG; Ziolkowska A; Gottardo L; Nowak KW; Nussdorfer GG
    Int J Mol Med; 2002 Mar; 9(3):233-43. PubMed ID: 11836629
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparative distribution of pituitary adenylate cyclase-activating polypeptide (PACAP) binding sites and PACAP receptor mRNAs in the rat brain during development.
    Basille M; Vaudry D; Coulouarn Y; Jegou S; Lihrmann I; Fournier A; Vaudry H; Gonzalez B
    J Comp Neurol; 2000 Oct; 425(4):495-509. PubMed ID: 10975876
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The neuropeptide pituitary adenylate cyclase-activating polypeptide exerts anti-apoptotic and differentiating effects during neurogenesis: focus on cerebellar granule neurones and embryonic stem cells.
    Falluel-Morel A; Chafai M; Vaudry D; Basille M; Cazillis M; Aubert N; Louiset E; de Jouffrey S; Le Bigot JF; Fournier A; Gressens P; Rostène W; Vaudry H; Gonzalez BJ
    J Neuroendocrinol; 2007 May; 19(5):321-7. PubMed ID: 17425606
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High-voltage-activated calcium current and its modulation by dopamine D4 and pituitary adenylate cyclase activating polypeptide receptors in cerebellar granule cells.
    Mei YA
    Zhongguo Yao Li Xue Bao; 1999 Jan; 20(1):3-9. PubMed ID: 10437116
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multiple signal pathways coupling VIP and PACAP receptors to calcium channels in hamster submandibular ganglion neurons.
    Kamaishi H; Endoh T; Suzuki T
    Auton Neurosci; 2004 Mar; 111(1):15-26. PubMed ID: 15109935
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptors in the brain.
    Shioda S
    Kaibogaku Zasshi; 2000 Dec; 75(6):487-507. PubMed ID: 11197592
    [TBL] [Abstract][Full Text] [Related]  

  • 58.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 59.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.