BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 10437682)

  • 21. Transiently evoked and distortion-product otoacoustic emissions. Comparison of results from normally hearing and hearing-impaired human ears.
    Probst R; Harris FP
    Arch Otolaryngol Head Neck Surg; 1993 Aug; 119(8):858-60. PubMed ID: 8343248
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effects on transient evoked otoacoustic emissions following changes in external auditory canal acoustic impedance.
    Stephen RO; Badham NJ
    Audiology; 1996; 35(4):180-93. PubMed ID: 8879446
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Contralateral suppression of transient-evoked otoacoustic emissions in humans: intensity effects.
    Hood LJ; Berlin CI; Hurley A; Cecola RP; Bell B
    Hear Res; 1996 Nov; 101(1-2):113-8. PubMed ID: 8951438
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Time-frequency distributions of click-evoked otoacoustic emissions.
    Tognola G; Grandori F; Ravazzani P
    Hear Res; 1997 Apr; 106(1-2):112-22. PubMed ID: 9112111
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Contralateral suppression of distortion-product otoacoustic emissions declines with age: a comparison of findings in CBA mice with human listeners.
    Jacobson M; Kim S; Romney J; Zhu X; Frisina RD
    Laryngoscope; 2003 Oct; 113(10):1707-13. PubMed ID: 14520094
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of high-dose cisplatin on auditory brainstem responses and otoacoustic emissions in laboratory animals.
    Sockalingam R; Freeman S; Cherny TL; Sohmer H
    Am J Otol; 2000 Jul; 21(4):521-7. PubMed ID: 10912698
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of transient evoked otoacoustic emission thresholds recorded conventionally and using maximum length sequences.
    Hine JE; Ho CT; Slaven A; Thornton AR
    Hear Res; 2001 Jun; 156(1-2):104-14. PubMed ID: 11377886
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Suppression of distortion product otoacoustic emissions and hearing threshold.
    Pienkowski M; Kunov H
    J Acoust Soc Am; 2001 Apr; 109(4):1496-502. PubMed ID: 11325121
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multi-variant analysis of otoacoustic emissions and estimation of hearing thresholds: transient evoked otoacoustic emissions.
    Vinck BM; Van Cauwenberge PB; Corthals P; De Vel E
    Audiology; 1998; 37(6):315-34. PubMed ID: 9888189
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sensitivity of transient evoked and distortion product otoacoustic emissions to the direct effects of noise on the human cochlea.
    Vinck BM; Van Cauwenberge PB; Leroy L; Corthals P
    Audiology; 1999; 38(1):44-52. PubMed ID: 10052835
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of temperature on the transient evoked and distortion product otoacoustic emissions in rats.
    Khvoles R; Freeman S; Sohmer H
    Audiol Neurootol; 1998; 3(6):349-60. PubMed ID: 9732129
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Objective audiometry with DPOAEs : New findings for generation mechanisms and clinical applications.
    Zelle D; Dalhoff E; Gummer AW
    HNO; 2017 Aug; 65(Suppl 2):122-129. PubMed ID: 28470484
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effects of continuous versus interrupted noise exposures on distortion product otoacoustic emissions in guinea pigs.
    Chang KW; Norton SJ
    Hear Res; 1996 Jul; 96(1-2):1-12. PubMed ID: 8817301
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reporting click-evoked and distortion-product otoacoustic emission results with respect to the pure-tone audiogram.
    Harris FP; Probst R
    Ear Hear; 1991 Dec; 12(6):399-405. PubMed ID: 1797607
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Are normal hearing thresholds a sufficient condition for click-evoked otoacoustic emissions?
    Kapadia S; Lutman ME
    J Acoust Soc Am; 1997 Jun; 101(6):3566-7. PubMed ID: 9547113
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs.
    Shera CA; Guinan JJ
    J Acoust Soc Am; 1999 Feb; 105(2 Pt 1):782-98. PubMed ID: 9972564
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Measures of auditory brain-stem responses, distortion product otoacoustic emissions, hair cell loss, and forward masked tuning curves in the waltzing guinea pig.
    Canlon B; Marklund K; Borg E
    J Acoust Soc Am; 1993 Dec; 94(6):3232-43. PubMed ID: 8300958
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Time-frequency analysis of transient evoked otoacoustic emissions via smoothed pseudo Wigner distribution.
    Cheng J
    Scand Audiol; 1995; 24(2):91-6. PubMed ID: 7660060
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transient evoked otoacoustic emissions recorder using maximum length sequences as a function of stimulus rate and level.
    Hine JE; Thornton AR
    Ear Hear; 1997 Apr; 18(2):121-8. PubMed ID: 9099561
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of contralateral acoustical stimulation on three measures of cochlear function in the guinea pig.
    Popelár J; Erre JP; Syka J; Aran JM
    Hear Res; 2001 Feb; 152(1-2):128-38. PubMed ID: 11223287
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.