These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 10437682)

  • 41. Evaluation of cochlear function in normal-hearing young adults exposed to MP3 player noise by analyzing transient evoked otoacoustic emissions and distortion products.
    Santaolalla Montoya F; Ibargüen AM; Vences AR; del Rey AS; Fernandez JM
    J Otolaryngol Head Neck Surg; 2008 Oct; 37(5):718-24. PubMed ID: 19128682
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Otoacoustic emissions without somatic motility: can stereocilia mechanics drive the mammalian cochlea?
    Liberman MC; Zuo J; Guinan JJ
    J Acoust Soc Am; 2004 Sep; 116(3):1649-55. PubMed ID: 15478431
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The possible relationship between transient evoked otoacoustic emissions and organ of Corti irregularities in the guinea pig.
    Hilger AW; Furness DN; Wilson JP
    Hear Res; 1995 Apr; 84(1-2):1-11. PubMed ID: 7642443
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Suppression and enhancement of distortion-product otoacoustic emissions by interference tones above f(2). I. Basic findings in rabbits.
    Martin GK; Stagner BB; Jassir D; Telischi FF; Lonsbury-Martin BL
    Hear Res; 1999 Oct; 136(1-2):105-23. PubMed ID: 10511630
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Distortion-product otoacoustic emission suppression growth in normal and noise-exposed rabbits.
    Porter CA; Martin GK; Stagner BB; Lonsbury-Martin BL
    J Acoust Soc Am; 2006 Aug; 120(2):884-900. PubMed ID: 16938977
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The relationship between auditory threshold and evoked otoacoustic emissions.
    Wagner W; Plinkert PK
    Eur Arch Otorhinolaryngol; 1999; 256(4):177-88. PubMed ID: 10337508
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cochlear function in young and adult Fischer 344 rats.
    Popelar J; Groh D; Mazelova J; Syka J
    Hear Res; 2003 Dec; 186(1-2):75-84. PubMed ID: 14644461
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Delay dependence for the origin of the nonlinear derived transient evoked otoacoustic emission.
    Withnell RH; McKinley S
    J Acoust Soc Am; 2005 Jan; 117(1):281-91. PubMed ID: 15704421
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Reconciling the origin of the transient evoked ototacoustic emission in humans.
    Withnell RH; Hazlewood C; Knowlton A
    J Acoust Soc Am; 2008 Jan; 123(1):212-21. PubMed ID: 18177152
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Otoacoustic emissions in young adults: Effects of blood group.
    Chow KT; McPherson B; Fuente A
    Hear Res; 2016 Mar; 333():194-200. PubMed ID: 26375628
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Role of transient-evoked otoacoustic emissions for hearing preservation in acoustic neuroma surgery.
    Filipo R; Delfini R; Fabiani M; Cordier A; Barbara M
    Am J Otol; 1997 Nov; 18(6):746-9. PubMed ID: 9391671
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Influence of aging on active cochlear micromechanical properties and on the medial olivocochlear system in humans.
    Castor X; Veuillet E; Morgon A; Collet L
    Hear Res; 1994 Jun; 77(1-2):1-8. PubMed ID: 7928721
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The role of transient-evoked otoacoustic emission testing in the evaluation of elderly persons.
    Bertoli S; Probst R
    Ear Hear; 1997 Aug; 18(4):286-93. PubMed ID: 9288474
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Neonatal otoacoustic emissions recorded using maximum length sequence stimuli.
    Slaven A; Thornton AR
    Ear Hear; 1998 Apr; 19(2):103-10. PubMed ID: 9562532
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Filtering of distortion-product otoacoustic emissions in the inner ear of birds and lizards.
    Taschenberger G; Gallo L; Manley GA
    Hear Res; 1995 Nov; 91(1-2):87-92. PubMed ID: 8647729
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electrically Evoked Medial Olivocochlear Efferent Effects on Stimulus Frequency Otoacoustic Emissions in Guinea Pigs.
    Berezina-Greene MA; Guinan JJ
    J Assoc Res Otolaryngol; 2017 Feb; 18(1):153-163. PubMed ID: 27798720
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phase-dependent suppression of transient evoked and distortion product otoacoustic emissions by a low-frequency tone.
    Scholz G; Mrowinski D; Hensel J
    Audiology; 1999; 38(5):271-5. PubMed ID: 10548375
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [The study of maturation of the auditory analyzer rabbit according distortion-product otoacoustic emissions].
    D'iakonova IN; Ishanova IuS; Rakhmanova IV
    Vestn Ross Akad Med Nauk; 2013; (11):94-7. PubMed ID: 24640737
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Time-frequency analysis of transient evoked-otoacoustic emissions in individuals with auditory neuropathy spectrum disorder.
    Narne VK; Prabhu PP; Chatni S
    Hear Res; 2014 Jul; 313():1-8. PubMed ID: 24768764
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Efferent-mediated reduction in cochlear gain does not alter tuning estimates from stimulus-frequency otoacoustic emission group delays.
    Bhagat SP; Kilgore C
    Neurosci Lett; 2014 Jan; 559():132-5. PubMed ID: 24333175
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.