These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 10438302)

  • 1. Engineering plants to cope with metals.
    Moffat AS
    Science; 1999 Jul; 285(5426):369-70. PubMed ID: 10438302
    [No Abstract]   [Full Text] [Related]  

  • 2. Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review.
    Lebeau T; Braud A; Jézéquel K
    Environ Pollut; 2008 Jun; 153(3):497-522. PubMed ID: 17981382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early transcriptomic response of Arabidopsis thaliana to polymetallic contamination: implications for the identification of potential biomarkers of metal exposure.
    Gómez-Sagasti MT; Barrutia O; Ribas G; Garbisu C; Becerril JM
    Metallomics; 2016 May; 8(5):518-31. PubMed ID: 27118254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The potential of genetic engineering of plants for the remediation of soils contaminated with heavy metals.
    Fasani E; Manara A; Martini F; Furini A; DalCorso G
    Plant Cell Environ; 2018 May; 41(5):1201-1232. PubMed ID: 28386947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoremediation of toxic metals from soil and waste water.
    Hooda V
    J Environ Biol; 2007 Apr; 28(2 Suppl):367-76. PubMed ID: 17929752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial and Plant-Assisted Bioremediation of Heavy Metal Polluted Environments: A Review.
    Ojuederie OB; Babalola OO
    Int J Environ Res Public Health; 2017 Dec; 14(12):. PubMed ID: 29207531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metallomics: lessons for metalliferous soil remediation.
    Haferburg G; Kothe E
    Appl Microbiol Biotechnol; 2010 Jul; 87(4):1271-80. PubMed ID: 20532755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comments to "Multicorrelation models and uptake factors to estimate extractable metal concentrations from soil and metal in plants in pasturelands fertilized with manure" by Lopes et al. (2012). [Environmental Pollution 166 (2012) 17-22].
    Römkens PF
    Environ Pollut; 2012 Oct; 169():143; discussion 144-7. PubMed ID: 22672810
    [No Abstract]   [Full Text] [Related]  

  • 9. Are plants useful as accumulation indicators of metal bioavailability?
    Remon E; Bouchardon JL; Le Guédard M; Bessoule JJ; Conord C; Faure O
    Environ Pollut; 2013 Apr; 175():1-7. PubMed ID: 23291231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytostabilization of a metal contaminated sandy soil. I: Influence of compost and/or inorganic metal immobilizing soil amendments on phytotoxicity and plant availability of metals.
    Ruttens A; Mench M; Colpaert JV; Boisson J; Carleer R; Vangronsveld J
    Environ Pollut; 2006 Nov; 144(2):524-32. PubMed ID: 16542762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Approaches for enhanced phytoextraction of heavy metals.
    Bhargava A; Carmona FF; Bhargava M; Srivastava S
    J Environ Manage; 2012 Aug; 105():103-20. PubMed ID: 22542973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multicorrelation models and uptake factors to estimate extractable metal concentrations from soil and metal in plants in pasturelands fertilized with manure.
    Lopes C; Herva M; Franco-Uría A; Roca E
    Environ Pollut; 2012 Jul; 166():17-22. PubMed ID: 22459710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Current situation and prospect on the remediation of soils contaminated by heavy metals].
    Long X; Yang X; Ni W
    Ying Yong Sheng Tai Xue Bao; 2002 Jun; 13(6):757-62. PubMed ID: 12216411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative studies of copper tolerance and uptake by three plant species of the genus elsholtzia.
    Xia Y; Shen ZG
    Bull Environ Contam Toxicol; 2007 Jul; 79(1):53-7. PubMed ID: 17599223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prospects of genetic engineering of plants for phytoremediation of toxic metals.
    Eapen S; D'Souza SF
    Biotechnol Adv; 2005 Mar; 23(2):97-114. PubMed ID: 15694122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transfer of metals to plants and red deer in an old lead mining area in Spain.
    Reglero MM; Monsalve-González L; Taggart MA; Mateo R
    Sci Total Environ; 2008 Nov; 406(1-2):287-97. PubMed ID: 18625513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of biological and chemical measures of metal bioavailability in field soils: test of a novel simulated earthworm gut extraction.
    Smith BA; Greenberg B; Stephenson GL
    Chemosphere; 2010 Oct; 81(6):755-66. PubMed ID: 20678790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pumping out the arsenic.
    Doucleff M; Terry N
    Nat Biotechnol; 2002 Nov; 20(11):1094-5. PubMed ID: 12410252
    [No Abstract]   [Full Text] [Related]  

  • 19. Phytoextraction of toxic metals: a central role for glutathione.
    Seth CS; Remans T; Keunen E; Jozefczak M; Gielen H; Opdenakker K; Weyens N; Vangronsveld J; Cuypers A
    Plant Cell Environ; 2012 Feb; 35(2):334-46. PubMed ID: 21486307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant biology in the genome era.
    Mlot C
    Science; 1998 Jul; 281(5375):331-2. PubMed ID: 9705707
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.