These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 10438743)

  • 21. The sim operon facilitates the transport and metabolism of sucrose isomers in Lactobacillus casei ATCC 334.
    Thompson J; Jakubovics N; Abraham B; Hess S; Pikis A
    J Bacteriol; 2008 May; 190(9):3362-73. PubMed ID: 18310337
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Organization and characterization of three genes involved in D-xylose catabolism in Lactobacillus pentosus.
    Lokman BC; van Santen P; Verdoes JC; Krüse J; Leer RJ; Posno M; Pouwels PH
    Mol Gen Genet; 1991 Nov; 230(1-2):161-9. PubMed ID: 1660563
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The glycolytic genes pfk and pyk from Lactobacillus casei are induced by sugars transported by the phosphoenolpyruvate:sugar phosphotransferase system and repressed by CcpA.
    Viana R; Pérez-Martínez G; Deutscher J; Monedero V
    Arch Microbiol; 2005 Sep; 183(6):385-93. PubMed ID: 16075200
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expression of the xylulose 5-phosphate phosphoketolase gene, xpkA, from Lactobacillus pentosus MD363 is induced by sugars that are fermented via the phosphoketolase pathway and is repressed by glucose mediated by CcpA and the mannose phosphoenolpyruvate phosphotransferase system.
    Posthuma CC; Bader R; Engelmann R; Postma PW; Hengstenberg W; Pouwels PH
    Appl Environ Microbiol; 2002 Feb; 68(2):831-7. PubMed ID: 11823225
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Homo-D-lactic acid production from mixed sugars using xylose-assimilating operon-integrated Lactobacillus plantarum.
    Yoshida S; Okano K; Tanaka T; Ogino C; Kondo A
    Appl Microbiol Biotechnol; 2011 Oct; 92(1):67-76. PubMed ID: 21643702
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Integrative Genomic and Proteomic Analysis of the Response of Lactobacillus casei Zhang to Glucose Restriction.
    Yu J; Hui W; Cao C; Pan L; Zhang H; Zhang W
    J Proteome Res; 2018 Mar; 17(3):1290-1299. PubMed ID: 29405720
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sugar transport. Properties of mutant bacteria defective in proteins of the phosphoenolpyruvate: sugar phosphotransferase system.
    Simoni RD; Roseman S; Saier MH
    J Biol Chem; 1976 Nov; 251(21):6584-97. PubMed ID: 789368
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enzymes II of the phosphotransferase system do not catalyze sugar transport in the absence of phosphorylation.
    Postma PW; Stock JB
    J Bacteriol; 1980 Feb; 141(2):476-84. PubMed ID: 6988384
    [TBL] [Abstract][Full Text] [Related]  

  • 29. sigma54-Mediated control of the mannose phosphotransferase sytem in Lactobacillus plantarum impacts on carbohydrate metabolism.
    Stevens MJA; Molenaar D; de Jong A; De Vos WM; Kleerebezem M
    Microbiology (Reading); 2010 Mar; 156(Pt 3):695-707. PubMed ID: 19942662
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Correlation between depression of catabolite control of xylose metabolism and a defect in the phosphoenolpyruvate:mannose phosphotransferase system in Pediococcus halophilus.
    Abe K; Uchida K
    J Bacteriol; 1989 Apr; 171(4):1793-800. PubMed ID: 2703460
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expression of Bacillus subtilis levanase gene in Lactobacillus plantarum and Lactobacillus casei.
    Wanker E; Leer RJ; Pouwels PH; Schwab H
    Appl Microbiol Biotechnol; 1995; 43(2):297-303. PubMed ID: 7612248
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lactobacillus casei ferments the N-Acetylglucosamine moiety of fucosyl-α-1,3-N-acetylglucosamine and excretes L-fucose.
    Rodríguez-Díaz J; Rubio-del-Campo A; Yebra MJ
    Appl Environ Microbiol; 2012 Jul; 78(13):4613-9. PubMed ID: 22544237
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transport of glucose by a phosphoenolpyruvate:mannose phosphotransferase system in Pasteurella multocida.
    Binet MR; Bouvet OM
    Res Microbiol; 1998 Feb; 149(2):83-94. PubMed ID: 9766212
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional reconstitution of the purified phosphoenolpyruvate-dependent mannitol-specific transport system of Escherichia coli in phospholipid vesicles: coupling between transport and phosphorylation.
    Elferink MG; Driessen AJ; Robillard GT
    J Bacteriol; 1990 Dec; 172(12):7119-25. PubMed ID: 2123863
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of glycolysis and sugar phosphotransferase activities in Streptococcus lactis: growth in the presence of 2-deoxy-D-glucose.
    Thompson J; Chassy BM
    J Bacteriol; 1983 May; 154(2):819-30. PubMed ID: 6404888
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Phosphoenolpyruvate:hexose phosphotransferase systems in Lactobacillus species].
    Nagasaki H; Ito K; Matsuzaki S; Tanaka S
    Nihon Saikingaku Zasshi; 1992 Jul; 47(4):617-24. PubMed ID: 1433910
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transport of mannose by an inducible phosphoenolpyruvate:fructose phosphotransferase system in Streptococcus salivarius.
    Pelletier G; Frenette M; Vadeboncoeur C
    Microbiology (Reading); 1994 Sep; 140 ( Pt 9)():2433-8. PubMed ID: 7952194
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evidence of a glucose proton motive force-dependent permease and a fructose phosphoenolpyruvate:phosphotransferase transport system in Lactobacillus reuteri CRL 1098.
    Taranto MP; Font de Valdez G; Perez-Martinez G
    FEMS Microbiol Lett; 1999 Dec; 181(1):109-12. PubMed ID: 10564795
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cloning and expression of the beta-D-phosphogalactoside galactohydrolase gene of Lactobacillus casei in Escherichia coli K-12.
    Lee LJ; Hansen JB; Jagusztyn-Krynicka EK; Chassy BM
    J Bacteriol; 1982 Dec; 152(3):1138-46. PubMed ID: 6292163
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of the phosphoenolpyruvate-dependent fructose phosphotransferase system in the utilization of mannose by Escherichia coli.
    Kornberg HL; Lambourne LT
    Proc Biol Sci; 1992 Oct; 250(1327):51-5. PubMed ID: 1361062
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.