These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 10439410)

  • 1. The effect of heavy metals and other environmental conditions on the anaerobic phosphate metabolism of Acinetobacter johnsonii.
    Boswell CD; Dick RE; Macaskie LE
    Microbiology (Reading); 1999 Jul; 145 ( Pt 7)():1711-1720. PubMed ID: 10439410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphate uptake and release by Acinetobacter johnsonii in continuous culture and coupling of phosphate release to heavy metal accumulation.
    Boswell CD; Dick RE; Eccles H; Macaskie LE
    J Ind Microbiol Biotechnol; 2001 Jun; 26(6):333-40. PubMed ID: 11571615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of environmental parameters on polyphosphate accumulation in Acinetobacter sp.
    van Groenestijn JW; Zuidema M; van de Worp JJ; Deinema MH; Zehnder AJ
    Antonie Van Leeuwenhoek; 1989; 55(1):67-82. PubMed ID: 2742368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of a proton motive force by the excretion of metal-phosphate in the polyphosphate-accumulating Acinetobacter johnsonii strain 210A.
    van Veen HW; Abee T; Kortstee GJ; Pereira H; Konings WN; Zehnder AJ
    J Biol Chem; 1994 Nov; 269(47):29509-14. PubMed ID: 7961934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate specificity of the two phosphate transport systems of Acinetobacter johnsonii 210A in relation to phosphate speciation in its aquatic environment.
    van Veen HW; Abee T; Kortstee GJ; Konings WN; Zehnder AJ
    J Biol Chem; 1994 Jun; 269(23):16212-6. PubMed ID: 8206923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of two phosphate transport systems in Acinetobacter johnsonii 210A.
    Van Veen HW; Abee T; Kortstee GJ; Konings WN; Zehnder AJ
    J Bacteriol; 1993 Jan; 175(1):200-6. PubMed ID: 8380151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of 31P nuclear magnetic resonance spectroscopy and electron microscopy to study phosphorus metabolism of microorganisms from wastewaters.
    Florentz M; Granger P; Hartemann P
    Appl Environ Microbiol; 1984 Mar; 47(3):519-25. PubMed ID: 6712218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of anaerobic phosphate release by nitric oxide in activated sludge.
    Van Niel EW; Appeldoorn KJ; Zehnder AJ; Kortstee GJ
    Appl Environ Microbiol; 1998 Aug; 64(8):2925-30. PubMed ID: 9687452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uranyl precipitation by Pseudomonas aeruginosa via controlled polyphosphate metabolism.
    Renninger N; Knopp R; Nitsche H; Clark DS; Keasling JD
    Appl Environ Microbiol; 2004 Dec; 70(12):7404-12. PubMed ID: 15574942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biology of polyphosphate-accumulating bacteria involved in enhanced biological phosphorus removal.
    Kortstee GJ; Appeldoorn KJ; Bonting CF; van Niel EW; van Veen HW
    FEMS Microbiol Rev; 1994 Oct; 15(2-3):137-53. PubMed ID: 7946465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decrease of U(VI) immobilization capability of the facultative anaerobic strain Paenibacillus sp. JG-TB8 under anoxic conditions due to strongly reduced phosphatase activity.
    Reitz T; Rossberg A; Barkleit A; Selenska-Pobell S; Merroun ML
    PLoS One; 2014; 9(8):e102447. PubMed ID: 25157416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyphosphate-degrading enzymes in Acinetobacter spp. and activated sludge.
    van Groenestijn JW; Bentvelsen MM; Deinema MH; Zehnder AJ
    Appl Environ Microbiol; 1989 Jan; 55(1):219-23. PubMed ID: 2539774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism and energetics of the secondary phosphate transport system of Acinetobacter johnsonii 210A.
    van Veen HW; Abee T; Kortstee GJ; Konings WN; Zehnder AJ
    J Biol Chem; 1993 Sep; 268(26):19377-83. PubMed ID: 8366084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial degradation of lipid by Acinetobacter sp. strain SOD-1.
    Sugimori D; Nakamura M; Mihara Y
    Biosci Biotechnol Biochem; 2002 Jul; 66(7):1579-82. PubMed ID: 12224647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple mechanisms of uranium immobilization by Cellulomonas sp. strain ES6.
    Sivaswamy V; Boyanov MI; Peyton BM; Viamajala S; Gerlach R; Apel WA; Sani RK; Dohnalkova A; Kemner KM; Borch T
    Biotechnol Bioeng; 2011 Feb; 108(2):264-76. PubMed ID: 20872821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uranium Biominerals Precipitated by an Environmental Isolate of Serratia under Anaerobic Conditions.
    Newsome L; Morris K; Lloyd JR
    PLoS One; 2015; 10(7):e0132392. PubMed ID: 26132209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aerobic uranium immobilization by Rhodanobacter A2-61 through formation of intracellular uranium-phosphate complexes.
    Sousa T; Chung AP; Pereira A; Piedade AP; Morais PV
    Metallomics; 2013 Apr; 5(4):390-7. PubMed ID: 23487302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a phenol-degrading bacterium isolated from an industrial effluent and its potential application for bioremediation.
    Paisio CE; Talano MA; González PS; Pajuelo-Domínguez E; Agostini E
    Environ Technol; 2013; 34(1-4):485-93. PubMed ID: 23530363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological phosphorus removal in wastewater treatment.
    Timmerman MW
    Microbiol Sci; 1984 Sep; 1(6):149-52. PubMed ID: 6444138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hexavalent chromium reduction by Acinetobacter haemolyticus isolated from heavy-metal contaminated wastewater.
    Zakaria ZA; Zakaria Z; Surif S; Ahmad WA
    J Hazard Mater; 2007 Jul; 146(1-2):30-8. PubMed ID: 17188812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.