These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 10439862)
1. [Reasons causing a lag period in the oxidative phosphorylation process. Isn't ATP an internal uncoupler of ATP synthetase?]. Bronnikov GE; Vinogradova SO; Mezentseva VS; Samoĭlova EV Biofizika; 1999; 44(3):465-73. PubMed ID: 10439862 [TBL] [Abstract][Full Text] [Related]
2. Adenine nucleotides regulate the functional transition in mitochondrial H+-ATPase and the kinetic behaviour of its ATP-synthetase form. Bronnikov GE; Samoylova EV Biochem Int; 1987 May; 14(5):859-69. PubMed ID: 2900638 [TBL] [Abstract][Full Text] [Related]
3. Mitochondrial ATP-Pi exchange complex and the site of uncoupling of oxidative phosphorylation. Hatefi Y; Hanstein WG; Galante Y; Stiggall DL Fed Proc; 1975 Jul; 34(8):1699-706. PubMed ID: 1093889 [TBL] [Abstract][Full Text] [Related]
4. The alpha 3(beta Y341W)3 gamma subcomplex of the F1-ATPase from the thermophilic Bacillus PS3 fails to dissociate ADP when MgATP is hydrolyzed at a single catalytic site and attains maximal velocity when three catalytic sites are saturated with MgATP. Dou C; Fortes PA; Allison WS Biochemistry; 1998 Nov; 37(47):16757-64. PubMed ID: 9843446 [TBL] [Abstract][Full Text] [Related]
5. Kinetic mechanism of ATP synthesis catalyzed by mitochondrial Fo x F1-ATPase. Galkin MA; Syroeshkin AV Biochemistry (Mosc); 1999 Oct; 64(10):1176-85. PubMed ID: 10561566 [TBL] [Abstract][Full Text] [Related]
6. Kinetic mechanism of Fo x F1 mitochondrial ATPase: Mg2+ requirement for Mg x ATP hydrolysis. Syroeshkin AV; Galkin MA; Sedlov AV; Vinogradov AD Biochemistry (Mosc); 1999 Oct; 64(10):1128-37. PubMed ID: 10561559 [TBL] [Abstract][Full Text] [Related]
7. The effects of partial uncoupling upon the kinetics of ATP synthesis by vesicles from Paracoccus denitrificans and by bovine heart submitochondrial particles. Implications for the mechanism of the proton-translocating ATP synthase. McCarthy JE; Ferguson SJ Eur J Biochem; 1983 May; 132(2):425-31. PubMed ID: 6301834 [TBL] [Abstract][Full Text] [Related]
8. Calcium inhibition of the ATP in equilibrium with [32P]Pi exchange and of net ATP synthesis catalyzed by bovine submitochondrial particles. Vercesi AE; Hermes-Lima M; Meyer-Fernandes JR; Vieyra A Biochim Biophys Acta; 1990 Oct; 1020(1):101-6. PubMed ID: 2145974 [TBL] [Abstract][Full Text] [Related]
9. Catalytic site nucleotide binding and hydrolysis in F1F0-ATP synthase. Löbau S; Weber J; Senior AE Biochemistry; 1998 Jul; 37(30):10846-53. PubMed ID: 9692975 [TBL] [Abstract][Full Text] [Related]
10. Role of phosphate chain mobility of MgATP in completing the 3-phosphoglycerate kinase catalytic site: binding, kinetic, and crystallographic studies with ATP and MgATP. Flachner B; Kovári Z; Varga A; Gugolya Z; Vonderviszt F; Náray-Szabó G; Vas M Biochemistry; 2004 Mar; 43(12):3436-49. PubMed ID: 15035615 [TBL] [Abstract][Full Text] [Related]
11. ATP synthesis catalyzed by the mitochondrial F1-F0 ATP synthase is not a reversal of its ATPase activity. Syroeshkin AV; Vasilyeva EA; Vinogradov AD FEBS Lett; 1995 Jun; 366(1):29-32. PubMed ID: 7789510 [TBL] [Abstract][Full Text] [Related]
12. Coupling of "high-energy" phosphate bonds to energy transductions. Boyer PD; Stokes BO; Wolcott RG; Degani C Fed Proc; 1975 Jul; 34(8):1711-7. PubMed ID: 124270 [TBL] [Abstract][Full Text] [Related]
13. Energy-linked binding of Pi is required for continuous steady-state proton-translocating ATP hydrolysis catalyzed by F0.F1 ATP synthase. Zharova TV; Vinogradov AD Biochemistry; 2006 Dec; 45(48):14552-8. PubMed ID: 17128994 [TBL] [Abstract][Full Text] [Related]
14. ATP synthesis by purified ATP-synthase from beef heart mitochondria after coreconstitution with bacteriorhodopsin. Matuschka S; Zwicker K; Nawroth T; Zimmer G Arch Biochem Biophys; 1995 Sep; 322(1):135-42. PubMed ID: 7574667 [TBL] [Abstract][Full Text] [Related]
15. Inhibition by trifluoperazine of ATP synthesis and hydrolysis by particulate and soluble mitochondrial F1: competition with H2PO4-. García JJ; Tuena de Gómez-Puyou M; Gómez-Puyou A J Bioenerg Biomembr; 1995 Feb; 27(1):127-36. PubMed ID: 7629044 [TBL] [Abstract][Full Text] [Related]
16. Influence of divalent cations on nucleotide exchange and ATPase activity of chloroplast coupling factor 1. Digel JG; Moore ND; McCarty RE Biochemistry; 1998 Dec; 37(49):17209-15. PubMed ID: 9860834 [TBL] [Abstract][Full Text] [Related]
17. Effect of reducing agents and uncouplers on the electrical potential generated by mitochondrial ATPase activity. Encío I; de Miguel C; López-Moratalla N; Santiago E Rev Esp Fisiol; 1989 Dec; 45(4):395-405. PubMed ID: 2561021 [TBL] [Abstract][Full Text] [Related]
18. Studies on the mechanism of oxidative phosphorylation. Catalytic site cooperativity in ATP synthesis. Matsuno-Yagi A; Hatefi Y J Biol Chem; 1985 Nov; 260(27):11424-7. PubMed ID: 4055778 [TBL] [Abstract][Full Text] [Related]
19. Energy conservation and uncoupling in mitochondria. Hatefi Y J Supramol Struct; 1975; 3(3):201-13. PubMed ID: 1102805 [TBL] [Abstract][Full Text] [Related]
20. Uncoupling of oxidative phosphorylation: different effects of lipophilic weak acids and electrogenic ionophores on the kinetics of ATP synthesis. Matsuno-Yagi A; Hatefi Y Biochemistry; 1989 May; 28(10):4367-74. PubMed ID: 2475167 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]