BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 10440570)

  • 21. Transport measurements across Caco-2 monolayers of different organic and inorganic selenium: influence of sulfur compounds.
    Leblondel G; Mauras Y; Cailleux A; Allain P
    Biol Trace Elem Res; 2001 Dec; 83(3):191-206. PubMed ID: 11794512
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transport of Val-Leu-Pro-Val-Pro in human intestinal epithelial (Caco-2) cell monolayers.
    Lei L; Sun H; Liu D; Liu L; Li S
    J Agric Food Chem; 2008 May; 56(10):3582-6. PubMed ID: 18442243
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efflux of dietary flavonoid quercetin 4'-beta-glucoside across human intestinal Caco-2 cell monolayers by apical multidrug resistance-associated protein-2.
    Walgren RA; Karnaky KJ; Lindenmayer GE; Walle T
    J Pharmacol Exp Ther; 2000 Sep; 294(3):830-6. PubMed ID: 10945830
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Uptake of serotonin at the apical and basolateral membranes of human intestinal epithelial (Caco-2) cells occurs through the neuronal serotonin transporter (SERT).
    Martel F; Monteiro R; Lemos C
    J Pharmacol Exp Ther; 2003 Jul; 306(1):355-62. PubMed ID: 12682218
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transport of quercetin and its glucosides across human intestinal epithelial Caco-2 cells.
    Walgren RA; Walle UK; Walle T
    Biochem Pharmacol; 1998 May; 55(10):1721-7. PubMed ID: 9634009
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of diosmin, a flavonoid glycoside in citrus fruits, on P-glycoprotein-mediated drug efflux in human intestinal Caco-2 cells.
    Yoo HH; Lee M; Chung HJ; Lee SK; Kim DH
    J Agric Food Chem; 2007 Sep; 55(18):7620-5. PubMed ID: 17676865
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Resveratrol transport and metabolism by human intestinal Caco-2 cells.
    Kaldas MI; Walle UK; Walle T
    J Pharm Pharmacol; 2003 Mar; 55(3):307-12. PubMed ID: 12724035
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cellular uptake of dietary flavonoid quercetin 4'-beta-glucoside by sodium-dependent glucose transporter SGLT1.
    Walgren RA; Lin JT; Kinne RK; Walle T
    J Pharmacol Exp Ther; 2000 Sep; 294(3):837-43. PubMed ID: 10945831
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chromium nanoparticle exhibits higher absorption efficiency than chromium picolinate and chromium chloride in Caco-2 cell monolayers.
    Zha LY; Xu ZR; Wang MQ; Gu LY
    J Anim Physiol Anim Nutr (Berl); 2008 Apr; 92(2):131-40. PubMed ID: 18336409
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sulfasalazine transport in in-vitro, ex-vivo and in-vivo absorption models: contribution of efflux carriers and their modulation by co-administration of synthetic nature-identical fruit extracts.
    Mols R; Deferme S; Augustijns P
    J Pharm Pharmacol; 2005 Dec; 57(12):1565-73. PubMed ID: 16354400
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Permeability modulation of human intestinal Caco-2 cell monolayers by interferons.
    Kawaguchi H; Akazawa Y; Watanabe Y; Takakura Y
    Eur J Pharm Biopharm; 2005 Jan; 59(1):45-50. PubMed ID: 15567300
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transport mechanisms for soy isoflavones and microbial metabolites dihydrogenistein and dihydrodaidzein across monolayers and membranes.
    Kobayashi S; Shinohara M; Nagai T; Konishi Y
    Biosci Biotechnol Biochem; 2013; 77(11):2210-7. PubMed ID: 24200780
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cellular Pharmacokinetic Model-Based Analysis of Genistein, Glyceollin, and MK-571 Effects on 5 (and 6)-Carboxy-2',7'-Dichloroflourescein Disposition in Caco-2 Cells.
    Drennen C; Gorse E; Stratford RE
    J Pharm Sci; 2018 Apr; 107(4):1194-1203. PubMed ID: 29247742
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unique uptake and transport of isoflavone aglycones by human intestinal caco-2 cells: comparison of isoflavonoids and flavonoids.
    Murota K; Shimizu S; Miyamoto S; Izumi T; Obata A; Kikuchi M; Terao J
    J Nutr; 2002 Jul; 132(7):1956-61. PubMed ID: 12097676
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transport characteristics of isorhamnetin across intestinal Caco-2 cell monolayers and the effects of transporters on it.
    Duan J; Xie Y; Luo H; Li G; Wu T; Zhang T
    Food Chem Toxicol; 2014 Apr; 66():313-20. PubMed ID: 24525098
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intestinal transport of sophocarpine across the Caco-2 cell monolayer model and quantification by LC/MS.
    Sun S; Zhang H; Sun F; Zhao L; Zhong Y; Chai Y; Zhang G
    Biomed Chromatogr; 2014 Jun; 28(6):885-90. PubMed ID: 24861759
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcellular transport of genistein, a soybean-derived isoflavone, across human colon carcinoma cell line (Caco-2).
    Oitate M; Nakaki R; Koyabu N; Takanaga H; Matsuo H; Ohtani H; Sawada Y
    Biopharm Drug Dispos; 2001 Jan; 22(1):23-9. PubMed ID: 11745904
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of Caco-2, IEC-18 and HCEC cell lines as a model for intestinal absorption of genistein, daidzein and their glycosides.
    Steensma A; Noteborn HP; Kuiper HA
    Environ Toxicol Pharmacol; 2004 Apr; 16(3):131-9. PubMed ID: 21782699
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Absorption and metabolism of genistin in the isolated rat small intestine.
    Andlauer W; Kolb J; Fürst P
    FEBS Lett; 2000 Jun; 475(2):127-30. PubMed ID: 10858502
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Response surface method optimize of nano-silica solid dispersion technology assistant enzymatic hydrolysis preparation genistein].
    Jin X; Zhang ZH; Zhu J; Sun E; Yu DH; Chen XY; Liu QY; Ning Q; Jia XB
    Yao Xue Xue Bao; 2012 Apr; 47(4):522-8. PubMed ID: 22799038
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.