These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 10440660)

  • 1. Effects of length on the catchlike property of human quadriceps femoris muscle.
    Lee SC; Gerdom ML; Binder-Macleod SA
    Phys Ther; 1999 Aug; 79(8):738-48. PubMed ID: 10440660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of potentiation on the catchlike property of human skeletal muscles.
    Ding J; Storaska JA; Binder-Macleod SA
    Muscle Nerve; 2003 Mar; 27(3):312-9. PubMed ID: 12635118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catchlike property of skeletal muscle: recent findings and clinical implications.
    Binder-Macleod S; Kesar T
    Muscle Nerve; 2005 Jun; 31(6):681-93. PubMed ID: 15736271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of a catchlike property of human skeletal muscle to reduce fatigue.
    Binder-Macleod SA; Barker CB
    Muscle Nerve; 1991 Sep; 14(9):850-7. PubMed ID: 1922180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catchlike property of human muscle during isovelocity movements.
    Binder-Macleod SA; Lee SC
    J Appl Physiol (1985); 1996 Jun; 80(6):2051-9. PubMed ID: 8806913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quadriceps fatigue caused by catchlike-inducing trains is not altered in old age.
    Allman BL; Cheng AJ; Rice CL
    Muscle Nerve; 2004 Dec; 30(6):743-51. PubMed ID: 15468338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic costs of force generation for constant-frequency and catchlike-inducing electrical stimulation in human tibialis anterior muscle.
    Ratkevicius A; Quistorff B
    Muscle Nerve; 2002 Mar; 25(3):419-26. PubMed ID: 11870720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting optimal electrical stimulation for repetitive human muscle activation.
    Chou LW; Ding J; Wexler AS; Binder-Macleod SA
    J Electromyogr Kinesiol; 2005 Jun; 15(3):300-9. PubMed ID: 15763677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of activation pattern on human skeletal muscle fatigue.
    Binder-Macleod SA; Lee SC; Russ DW; Kucharski LJ
    Muscle Nerve; 1998 Sep; 21(9):1145-52. PubMed ID: 9703440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Augmentation of the contraction force of human thenar muscles by and during brief discharge trains.
    Howells J; Trevillion L; Jankelowitz S; Burke D
    Muscle Nerve; 2006 Mar; 33(3):384-92. PubMed ID: 16435342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strategies that improve paralyzed human quadriceps femoris muscle performance during repetitive, nonisometric contractions.
    Kebaetse MB; Lee SC; Johnston TE; Binder-Macleod SA
    Arch Phys Med Rehabil; 2005 Nov; 86(11):2157-64. PubMed ID: 16271564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in quadriceps femoris muscle torque when using a clinical electrical stimulator versus a portable electrical stimulator.
    Lyons CL; Robb JB; Irrgang JJ; Fitzgerald GK
    Phys Ther; 2005 Jan; 85(1):44-51. PubMed ID: 15623361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of fatigue produced by various electrical stimulation trains.
    Binder-Macleod SA; Scott WB
    Acta Physiol Scand; 2001 Jul; 172(3):195-203. PubMed ID: 11472306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of activation pattern on nonisometric human skeletal muscle performance.
    Maladen RD; Perumal R; Wexler AS; Binder-Macleod SA
    J Appl Physiol (1985); 2007 May; 102(5):1985-91. PubMed ID: 17272410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of electrical stimulation pattern on the force responses of paralyzed human quadriceps muscles.
    Scott WB; Lee SC; Johnston TE; Binkley J; Binder-Macleod SA
    Muscle Nerve; 2007 Apr; 35(4):471-8. PubMed ID: 17212347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catchlike-inducing train activation of human muscle during isotonic contractions: burst modulation.
    Lee SC; Becker CN; Binder-Macleod SA
    J Appl Physiol (1985); 1999 Nov; 87(5):1758-67. PubMed ID: 10562620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catchlike property in human adductor pollicis muscle.
    Fortuna R; Vaz MA; Herzog W
    J Electromyogr Kinesiol; 2012 Apr; 22(2):228-33. PubMed ID: 22033309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New look at force-frequency relationship of human skeletal muscle: effects of fatigue.
    Binder-Macleod SA; Lee SC; Fritz AD; Kucharski LJ
    J Neurophysiol; 1998 Apr; 79(4):1858-68. PubMed ID: 9535953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between stimulation train characteristics and dynamic human skeletal muscle performance.
    Maladen R; Perumal R; Wexler AS; Binder-Macleod SA
    Acta Physiol (Oxf); 2007 Apr; 189(4):337-46. PubMed ID: 17367403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variable frequency trains enhance torque independent of stimulation amplitude.
    Slade JM; Bickel CS; Warren GL; Dudley GA
    Acta Physiol Scand; 2003 Jan; 177(1):87-92. PubMed ID: 12492782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.