These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 10441121)

  • 1. Secondary structure forming propensity coupled with amphiphilicity is an optimal motif in a peptide or protein for association with chaperonin 60 (GroEL).
    Preuss M; Hutchinson JP; Miller AD
    Biochemistry; 1999 Aug; 38(32):10272-86. PubMed ID: 10441121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A thermophilic mini-chaperonin contains a conserved polypeptide-binding surface: combined crystallographic and NMR studies of the GroEL apical domain with implications for substrate interactions.
    Hua Q; Dementieva IS; Walsh MA; Hallenga K; Weiss MA; Joachimiak A
    J Mol Biol; 2001 Feb; 306(3):513-25. PubMed ID: 11178910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GroEL recognises sequential and non-sequential linear structural motifs compatible with extended beta-strands and alpha-helices.
    Chatellier J; Buckle AM; Fersht AR
    J Mol Biol; 1999 Sep; 292(1):163-72. PubMed ID: 10493865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From minichaperone to GroEL 2: importance of avidity of the multisite ring structure.
    Chatellier J; Hill F; Fersht AR
    J Mol Biol; 2000 Dec; 304(5):883-96. PubMed ID: 11124034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Allostery wiring diagrams in the transitions that drive the GroEL reaction cycle.
    Tehver R; Chen J; Thirumalai D
    J Mol Biol; 2009 Mar; 387(2):390-406. PubMed ID: 19121324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of regions in the dihydrofolate reductase structure that interact with the molecular chaperonin GroEL.
    Clark AC; Hugo E; Frieden C
    Biochemistry; 1996 May; 35(18):5893-901. PubMed ID: 8639551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane binding and structure of de novo designed alpha-helical cationic coiled-coil-forming peptides.
    Vagt T; Zschörnig O; Huster D; Koksch B
    Chemphyschem; 2006 Jun; 7(6):1361-71. PubMed ID: 16680794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mechanism of GroEL/GroES folding/refolding of protein substrates revisited.
    Jones H; Preuss M; Wright M; Miller AD
    Org Biomol Chem; 2006 Apr; 4(7):1223-35. PubMed ID: 16557310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From minichaperone to GroEL 3: properties of an active single-ring mutant of GroEL.
    Chatellier J; Hill F; Foster NW; Goloubinoff P; Fersht AR
    J Mol Biol; 2000 Dec; 304(5):897-910. PubMed ID: 11124035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational properties of a peptide model for unfolded alpha-helices.
    Firestine AM; Chellgren VM; Rucker SJ; Lester TE; Creamer TP
    Biochemistry; 2008 Mar; 47(10):3216-24. PubMed ID: 18266321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GroEL walks the fine line: the subtle balance of substrate and co-chaperonin binding by GroEL. A combinatorial investigation by design, selection and screening.
    Kawe M; Plückthun A
    J Mol Biol; 2006 Mar; 357(2):411-26. PubMed ID: 16427651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of substrate binding site of GroEL minichaperone in solution.
    Tanaka N; Fersht AR
    J Mol Biol; 1999 Sep; 292(1):173-80. PubMed ID: 10493866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From minichaperone to GroEL 1: information on GroEL-polypeptide interactions from crystal packing of minichaperones.
    Wang Q; Buckle AM; Fersht AR
    J Mol Biol; 2000 Dec; 304(5):873-81. PubMed ID: 11124033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Monomeric form of the molecular chaperone GroEL: structure, stability, and oligomerization].
    Surin AK; Kotova NV; Marchenkova SIu; Marchenkov VV; Semisotnov GV
    Bioorg Khim; 1999 May; 25(5):358-64. PubMed ID: 10495893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamic stability and folding of GroEL minichaperones.
    Golbik R; Zahn R; Harding SE; Fersht AR
    J Mol Biol; 1998 Feb; 276(2):505-15. PubMed ID: 9512719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A kinetic analysis of the nucleotide-induced allosteric transitions of GroEL.
    Cliff MJ; Kad NM; Hay N; Lund PA; Webb MR; Burston SG; Clarke AR
    J Mol Biol; 1999 Oct; 293(3):667-84. PubMed ID: 10543958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of substrate recognition by the chaperonin GroEL.
    Houry WA
    Biochem Cell Biol; 2001; 79(5):569-77. PubMed ID: 11716298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tandem mass spectrometry of intact GroEL-substrate complexes reveals substrate-specific conformational changes in the trans ring.
    van Duijn E; Simmons DA; van den Heuvel RH; Bakkes PJ; van Heerikhuizen H; Heeren RM; Robinson CV; van der Vies SM; Heck AJ
    J Am Chem Soc; 2006 Apr; 128(14):4694-702. PubMed ID: 16594706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined thermodynamic and kinetic analysis of GroEL interacting with CXCR4 transmembrane peptides.
    Chi H; Xu B; Liu Z; Wei J; Li S; Ren H; Xu Y; Lu X; Wang X; Wang X; Huang F
    Biochim Biophys Acta Gen Subj; 2018 Jul; 1862(7):1576-1583. PubMed ID: 29627450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein.
    Tang YC; Chang HC; Roeben A; Wischnewski D; Wischnewski N; Kerner MJ; Hartl FU; Hayer-Hartl M
    Cell; 2006 Jun; 125(5):903-14. PubMed ID: 16751100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.