BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 10441390)

  • 1. Activation of Glut1 glucose transporter in response to inhibition of oxidative phosphorylation.
    Hamrahian AH; Zhang JZ; Elkhairi FS; Prasad R; Ismail-Beigi F
    Arch Biochem Biophys; 1999 Aug; 368(2):375-9. PubMed ID: 10441390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of GLUT1 glucose transporter overexpression on the stimulation of glucose transport in response to inhibition of oxidative phosphorylation.
    Ismail-Beigi F; Vanderburg G
    Arch Biochem Biophys; 1996 Jul; 331(2):201-7. PubMed ID: 8660699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential accumulation of Glut1 in the non-DRM domain of the plasma membrane in response to the inhibition of oxidative phosphorylation.
    Rubin D; Ismail-Beigi F
    Arch Biochem Biophys; 2004 Nov; 431(2):224-32. PubMed ID: 15488471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual control of glut1 glucose transporter gene expression by hypoxia and by inhibition of oxidative phosphorylation.
    Behrooz A; Ismail-Beigi F
    J Biol Chem; 1997 Feb; 272(9):5555-62. PubMed ID: 9038162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypoxia upregulates activity and expression of the glucose transporter GLUT1 in alveolar epithelial cells.
    Ouiddir A; Planès C; Fernandes I; VanHesse A; Clerici C
    Am J Respir Cell Mol Biol; 1999 Dec; 21(6):710-8. PubMed ID: 10572068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methyl-beta-cyclodextrin stimulates glucose uptake in Clone 9 cells: a possible role for lipid rafts.
    Barnes K; Ingram JC; Bennett MD; Stewart GW; Baldwin SA
    Biochem J; 2004 Mar; 378(Pt 2):343-51. PubMed ID: 14616090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimulation of AMP-activated protein kinase (AMPK) is associated with enhancement of Glut1-mediated glucose transport.
    Abbud W; Habinowski S; Zhang JZ; Kendrew J; Elkairi FS; Kemp BE; Witters LA; Ismail-Beigi F
    Arch Biochem Biophys; 2000 Aug; 380(2):347-52. PubMed ID: 10933890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of stimulation of glucose transport in response to inhibition of oxidative phosphorylation: analysis with myc-tagged Glut1.
    Koseoglu MH; Beigi FI
    Mol Cell Biochem; 1999 Apr; 194(1-2):109-16. PubMed ID: 10391130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of GLUT1 intrinsic activity in clone 9 cells by inhibition of oxidative phosphorylation.
    Shi Y; Liu H; Vanderburg G; Samuel SJ; Ismail-Beigi F; Jung CY
    J Biol Chem; 1995 Sep; 270(37):21772-8. PubMed ID: 7665597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of Glut1 glucose transporter in human erythrocytes.
    Zhang JZ; Ismail-Beigi F
    Arch Biochem Biophys; 1998 Aug; 356(1):86-92. PubMed ID: 9681995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of GLUT1-mediated sugar transport by an antiport/uniport switch mechanism.
    Cloherty EK; Diamond DL; Heard KS; Carruthers A
    Biochemistry; 1996 Oct; 35(40):13231-9. PubMed ID: 8855962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vitamin C enters mitochondria via facilitative glucose transporter 1 (Glut1) and confers mitochondrial protection against oxidative injury.
    KC S; Cárcamo JM; Golde DW
    FASEB J; 2005 Oct; 19(12):1657-67. PubMed ID: 16195374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human erythrocyte sugar transport is incompatible with available carrier models.
    Cloherty EK; Heard KS; Carruthers A
    Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytosolic [Ca(2+)] modulates basal GLUT1 activity and plays a permissive role in its activation by metabolic stress and insulin in rat epithelial cells.
    Quintanilla RA; Porras OH; Castro J; Barros LF
    Cell Calcium; 2000 Aug; 28(2):97-106. PubMed ID: 10970766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulation of cardiac glucose transport by inhibitors of oxidative phosphorylation.
    Colston VL; Wheeler TJ
    Life Sci; 2001 Oct; 69(20):2383-98. PubMed ID: 11681625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulation of GLUT1 glucose transporter expression in response to inhibition of oxidative phosphorylation: role of reduced sulfhydryl groups.
    Becker M; Newman S; Ismail-Beigi F
    Mol Cell Endocrinol; 1996 Aug; 121(2):165-70. PubMed ID: 8892317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid activation of GLUT-1 glucose transporter following inhibition of oxidative phosphorylation in clone 9 cells.
    Shetty M; Loeb JN; Vikstrom K; Ismail-Beigi F
    J Biol Chem; 1993 Aug; 268(23):17225-32. PubMed ID: 8349608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for mitochondrial localization of N-(4-methylphenylsulfonyl)-N'-(4-chlorophenyl)urea in human colon adenocarcinoma cells.
    Houghton PJ; Bailey FC; Houghton JA; Murti KG; Howbert JJ; Grindey GB
    Cancer Res; 1990 Feb; 50(3):664-8. PubMed ID: 2297707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induction of GLUT1 mRNA in response to inhibition of oxidative phosphorylation.
    Shetty M; Ismail-Beigi N; Loeb JN; Ismail-Beigi F
    Am J Physiol; 1993 Nov; 265(5 Pt 1):C1224-9. PubMed ID: 7694490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unique mechanism of GLUT3 glucose transporter regulation by prolonged energy demand: increased protein half-life.
    Khayat ZA; McCall AL; Klip A
    Biochem J; 1998 Aug; 333 ( Pt 3)(Pt 3):713-8. PubMed ID: 9677332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.