These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 10441445)

  • 1. Mechanistic and mathematical inactivation studies of food spoilage fungi.
    Brul S; Klis FM
    Fungal Genet Biol; 1999; 27(2-3):199-208. PubMed ID: 10441445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stress tolerance in fungi -- to kill a spoilage yeast.
    Smits GJ; Brul S
    Curr Opin Biotechnol; 2005 Apr; 16(2):225-30. PubMed ID: 15831391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Application of predictive microbiology in fungi growth and mycotoxin production].
    Wang W; Yu H; Li F
    Wei Sheng Yan Jiu; 2009 Nov; 38(6):753-6. PubMed ID: 20047240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. "Green preservatives": combating fungi in the food and feed industry by applying antifungal lactic acid bacteria.
    Pawlowska AM; Zannini E; Coffey A; Arendt EK
    Adv Food Nutr Res; 2012; 66():217-38. PubMed ID: 22909981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the efficacy of four weak acids as antifungal preservatives in low-acid intermediate moisture model food systems.
    Huang Y; Wilson M; Chapman B; Hocking AD
    Food Microbiol; 2010 Feb; 27(1):33-6. PubMed ID: 19913689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards a novel class of predictive microbial growth models.
    Van Impe JF; Poschet F; Geeraerd AH; Vereecken KM
    Int J Food Microbiol; 2005 Apr; 100(1-3):97-105. PubMed ID: 15854696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of plant derived compounds to control fungal spoilage and mycotoxin production in foods.
    da Cruz Cabral L; Fernández Pinto V; Patriarca A
    Int J Food Microbiol; 2013 Aug; 166(1):1-14. PubMed ID: 23816820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natural products as antifungal agents against clinically relevant pathogens.
    Di Santo R
    Nat Prod Rep; 2010 Jul; 27(7):1084-98. PubMed ID: 20485730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting mycotoxins in foods: a review.
    Garcia D; Ramos AJ; Sanchis V; Marín S
    Food Microbiol; 2009 Dec; 26(8):757-69. PubMed ID: 19835759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacteriocin-based strategies for food biopreservation.
    Gálvez A; Abriouel H; López RL; Ben Omar N
    Int J Food Microbiol; 2007 Nov; 120(1-2):51-70. PubMed ID: 17614151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A quasi-chemical model for the growth and death of microorganisms in foods by non-thermal and high-pressure processing.
    Doona CJ; Feeherry FE; Ross EW
    Int J Food Microbiol; 2005 Apr; 100(1-3):21-32. PubMed ID: 15854689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lactobacilli and dairy propionibacterium with potential as biopreservatives against food fungi and yeast contamination.
    Ho PH; Luo JB; Adams MC
    Prikl Biokhim Mikrobiol; 2009; 45(4):460-4. PubMed ID: 19764616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of type of microorganism, food ingredients and food properties on high-pressure carbon dioxide inactivation of microorganisms.
    Garcia-Gonzalez L; Geeraerd AH; Elst K; Van Ginneken L; Van Impe JF; Devlieghere F
    Int J Food Microbiol; 2009 Feb; 129(3):253-63. PubMed ID: 19157615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of sourdough fermented by antifungal LAB to reduce the amount of calcium propionate in bread.
    Ryan LA; Dal Bello F; Arendt EK
    Int J Food Microbiol; 2008 Jul; 125(3):274-8. PubMed ID: 18541323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antifungal activity stability of flaxseed protein extract using response surface methodology.
    Xu Y; Hall C; Wolf-Hall C
    J Food Sci; 2008 Jan; 73(1):M9-14. PubMed ID: 18211360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling the effects of (green) antifungals, droplet size distribution and temperature on mould outgrowth in water-in-oil emulsions.
    ter Steeg PF; Otten GD; Alderliesten M; de Weijer R; Naaktgeboren G; Bijl J; Vasbinder AJ; Kershof I; van Duijvendijk AM
    Int J Food Microbiol; 2001 Aug; 67(3):227-39. PubMed ID: 11518432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fitting of colony diameter and ergosterol as indicators of food borne mould growth to known growth models in solid medium.
    Marín S; Cuevas D; Ramos AJ; Sanchis V
    Int J Food Microbiol; 2008 Jan; 121(2):139-49. PubMed ID: 18031857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling the growth/no growth boundary of spoilage microorganisms in foods as an alternative method to preserve products without using chemical preservatives.
    Dang TD; Mertens L; Vermeulen A; Geeraerd AH; Van Impe J; Devlieghere F
    Commun Agric Appl Biol Sci; 2008; 73(1):67-70. PubMed ID: 18831247
    [No Abstract]   [Full Text] [Related]  

  • 19. Basis of predictive mycology.
    Dantigny P; Guilmart A; Bensoussan M
    Int J Food Microbiol; 2005 Apr; 100(1-3):187-96. PubMed ID: 15854704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is there a serious risk of resistance development to azoles among fungi due to the widespread use and long-term application of azole antifungals in medicine?
    Hof H
    Drug Resist Updat; 2008; 11(1-2):25-31. PubMed ID: 18325827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.