These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 10442713)

  • 1. X-ray scatter signatures for normal and neoplastic breast tissues.
    Kidane G; Speller RD; Royle GJ; Hanby AM
    Phys Med Biol; 1999 Jul; 44(7):1791-802. PubMed ID: 10442713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A semianalytic model to extract differential linear scattering coefficients of breast tissue from energy dispersive x-ray diffraction measurements.
    LeClair RJ; Boileau MM; Wang Y
    Med Phys; 2006 Apr; 33(4):959-67. PubMed ID: 16696472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping structural changes in breast tissue disease using x-ray scattering.
    Sidhu S; Siu KK; Falzon G; Hart SA; Foxe JG; Lewis RA
    Med Phys; 2009 Jul; 36(7):3211-7. PubMed ID: 19673220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimum momentum transfer arguments for x-ray forward scatter imaging.
    Leclair RJ; Johns PC
    Med Phys; 2002 Dec; 29(12):2881-90. PubMed ID: 12512723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small-angle x-ray scattering studies of human breast tissue samples.
    Fernández M; Keyriläinen J; Serimaa R; Torkkeli M; Karjalainen-Lindsberg ML; Tenhunen M; Thomlinson W; Urban V; Suortti P
    Phys Med Biol; 2002 Feb; 47(4):577-92. PubMed ID: 11900192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation of energy dispersive diffraction signatures and microCT of small breast tissue samples with pathological analysis.
    Griffiths JA; Royle GJ; Hanby AM; Horrocks JA; Bohndiek SE; Speller RD
    Phys Med Biol; 2007 Oct; 52(20):6151-64. PubMed ID: 17921577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. X-ray fluorescence and energy dispersive x-ray diffraction for the quantification of elemental concentrations in breast tissue.
    Geraki K; Farquharson MJ; Bradley DA
    Phys Med Biol; 2004 Jan; 49(1):99-110. PubMed ID: 14971775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. WAXS fat subtraction model to estimate differential linear scattering coefficients of fatless breast tissue: phantom materials evaluation.
    Tang RY; Laamanen C; McDonald N; LeClair RJ
    Med Phys; 2014 May; 41(5):053501. PubMed ID: 24784407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of Compton scattering to differentiate between classifications of normal and diseased breast tissue.
    Ryan EA; Farquharson MJ; Flinton DM
    Phys Med Biol; 2005 Jul; 50(14):3337-48. PubMed ID: 16177513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Algorithmic scatter correction in dual-energy digital mammography.
    Chen X; Nishikawa RM; Chan ST; Lau BA; Zhang L; Mou X
    Med Phys; 2013 Nov; 40(11):111919. PubMed ID: 24320452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Breast tissue classification using x-ray scattering measurements and multivariate data analysis.
    Ryan EA; Farquharson MJ
    Phys Med Biol; 2007 Nov; 52(22):6679-96. PubMed ID: 17975291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. X-ray properties of an anthropomorphic breast phantom for MRI and x-ray imaging.
    Freed M; Badal A; Jennings RJ; de las Heras H; Myers KJ; Badano A
    Phys Med Biol; 2011 Jun; 56(12):3513-33. PubMed ID: 21606556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compton scattering spectrum as a source of information of normal and neoplastic breast tissues' composition.
    Antoniassi M; Conceição AL; Poletti ME
    Appl Radiat Isot; 2012 Jul; 70(7):1451-5. PubMed ID: 22398323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of x-ray diffraction enhanced imaging in the diagnosis of breast cancer.
    Liu C; Yan X; Zhang X; Yang W; Peng W; Shi D; Zhu P; Huang W; Yuan Q
    Phys Med Biol; 2007 Jan; 52(2):419-27. PubMed ID: 17202624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. X-ray scattering from human breast tissues and breast-equivalent materials.
    Poletti ME; Gonçalves D; Mazzaro I
    Phys Med Biol; 2002 Jan; 47(1):47-63. PubMed ID: 11814227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correspondence: Quantitative evaluation of X-ray dark-field images for microcalcification analysis in mammography.
    Scherer K; Birnbacher L; Willer K; Chabior M; Herzen J; Pfeiffer F
    Nat Commun; 2016 Apr; 7():10863. PubMed ID: 27102865
    [No Abstract]   [Full Text] [Related]  

  • 17. Correspondence: Reply to 'Quantitative evaluation of X-ray dark-field images for microcalcification analysis in mammography'.
    Wang Z; Hauser N; Singer G; Trippel M; Kubik-Huch RA; Schneider CW; Stampanoni M
    Nat Commun; 2016 Apr; 7():10868. PubMed ID: 27102968
    [No Abstract]   [Full Text] [Related]  

  • 18. An active pixel sensor x-ray diffraction (APXRD) system for breast cancer diagnosis.
    Bohndiek SE; Royle GJ; Speller RD
    Phys Med Biol; 2009 Jun; 54(11):3513-27. PubMed ID: 19443951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A theoretical study on phase-contrast mammography with Thomson-scattering x-ray sources.
    De Caro L; Giannini C; Bellotti R; Tangaro S
    Med Phys; 2009 Oct; 36(10):4644-53. PubMed ID: 19928096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-energy digital mammography for calcification imaging: scatter and nonuniformity corrections.
    Kappadath SC; Shaw CC
    Med Phys; 2005 Nov; 32(11):3395-408. PubMed ID: 16372415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.