These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 1044343)

  • 1. Cochlear microphonics generated by microwave pulses.
    Chou C; Galambos R; Guy AW; Lovely RH
    J Microw Power; 1975 Dec; 10(4):361-7. PubMed ID: 1044343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Establishment of a cochlear injury model using bone-conducted ultrasound irradiation in guinea pigs and investigation on peripheral coding and recognition of ultrasonic signals.
    Wang F; Cao C; Huang C; Li Q; Li T; Liu X; Zhang S; Ceng X; Wang C
    Cell Mol Biol (Noisy-le-grand); 2018 Sep; 64(12):2-10. PubMed ID: 30301494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Middle-ear structures contribute little to auditory perception of microwaves.
    Chou CK; Galambos R
    J Microw Power; 1979 Dec; 14(4):321-6. PubMed ID: 261594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of ultrasound and temperature on the cochlear microphonic response following a round window irradiation.
    Barnett SB
    Acta Otolaryngol; 1980; 90(1-2):32-9. PubMed ID: 6969521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Instrumental perforation of the round window. Animal experiments using cochleography and ERA.
    Lamm H; Lehnhardt E; Lamm K
    Acta Otolaryngol; 1984; 98(5-6):454-61. PubMed ID: 6524341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brief report: the cochlear microphonic as an indication of outer hair cell function.
    Withnell RH
    Ear Hear; 2001 Feb; 22(1):75-7. PubMed ID: 11271978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cochlear microphonics and the initiation of spikes in the auditory nerve: correlation of single-unit data with neural and receptor potentials recorded from the round window.
    Ruggero MA; Robles L; Rich NC
    J Acoust Soc Am; 1986 May; 79(5):1491-8. PubMed ID: 3711448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The origin of the low-frequency microphonic in the first cochlear turn of guinea-pig.
    Patuzzi RB; Yates GK; Johnstone BM
    Hear Res; 1989 May; 39(1-2):177-88. PubMed ID: 2737964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Narrow-band action potentials of the guinea-pig cochlea as compared with the ordinary electrocochleograms under normal and pathological conditions].
    Shimamoto A
    Nihon Jibiinkoka Gakkai Kaiho; 1990 Apr; 93(4):640-50. PubMed ID: 2376802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in cochlear microphonic response after Y-ray irradiation of the inner ear of the guinea-pig.
    Nagel D; Schäfer J
    Arch Otorhinolaryngol; 1984; 241(1):17-21. PubMed ID: 6517739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of high-intensity sound on cochlear microphonics and activity of inferior colliculus neurons in the guinea pig.
    Popelár J; Syka J; Ulehlová L
    Arch Otorhinolaryngol; 1978 Sep; 221(2):115-22. PubMed ID: 751616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison between the effects of continuous and impact noise on cochlear potentials in guinea pigs.
    Salt AN; Konishi T; Cook RO; Akay A
    J Acoust Soc Am; 1981 Jun; 69(6):1746-52. PubMed ID: 7240586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-unit response at the round window of the guinea pig.
    Prijs VF
    Hear Res; 1986; 21(2):127-33. PubMed ID: 3700252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of compound action potential and cochlear microphonic two-tone suppression in the guinea pig.
    Remond MC; Harrison RV; Legouix JP
    Hear Res; 1982 Sep; 8(1):83-91. PubMed ID: 7142036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of low-frequency ultrasound on the inner ear: an electrophysiological study using the guinea pig cochlea.
    Ishida A; Matsui T; Yamamura K
    Eur Arch Otorhinolaryngol; 1993; 250(1):22-6. PubMed ID: 8466746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A macro-mechanical model of the guinea pig cochlea with realistic parameters.
    Brass D
    J Acoust Soc Am; 2000 Feb; 107(2):894-907. PubMed ID: 10687699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modifications of the nonlinearity of the cochlear microphonic responses produced by noise exposure in the guinea pig.
    Legouix JP; Joannès M
    Hear Res; 1984 Apr; 14(1):39-44. PubMed ID: 6746420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical tuning and amplification within the apex of the guinea pig cochlea.
    Recio-Spinoso A; Oghalai JS
    J Physiol; 2017 Jul; 595(13):4549-4561. PubMed ID: 28382742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nimodipine, an L-channel Ca2+ antagonist, reverses the negative summating potential recorded from the guinea pig cochlea.
    Bobbin RP; Jastreboff PJ; Fallon M; Littman T
    Hear Res; 1990 Jul; 46(3):277-87. PubMed ID: 2168361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effect of intravenous injection of aspirin on the cochlea].
    Kumagai M
    Hokkaido Igaku Zasshi; 1992 Mar; 67(2):216-33. PubMed ID: 1597302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.