These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 10444300)

  • 1. The effect of large solid angles of collection on quantitative X-ray microanalysis in the AEM.
    Watanabe M; Ackland DW; Williams DB
    J Microsc; 1999 Jul; 195(Pt 1):34-43. PubMed ID: 10444300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical and Experimental X-Ray Peak/Background Ratios and Implications for Energy-Dispersive Spectrometry in the Next-Generation Analytical Electron Microscope.
    Zaluzec NJ
    Microsc Microanal; 2016 Feb; 22(1):230-6. PubMed ID: 26794345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-Ray Absorption Correction for Quantitative Scanning Transmission Electron Microscopic Energy-Dispersive X-Ray Spectroscopy of Spherical Nanoparticles.
    Slater T; Chen Y; Auton G; Zaluzec N; Haigh S
    Microsc Microanal; 2016 Apr; 22(2):440-7. PubMed ID: 27050041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative Assessment and Measurement of X-ray Detector Performance and Solid Angle in the Analytical Electron Microscope.
    Zaluzec NJ
    Microsc Microanal; 2022 Feb; 28(1):83-95. PubMed ID: 35177138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving the sensitivity of X-ray microanalysis in the analytical electron microscope.
    Zaluzec NJ
    Ultramicroscopy; 2019 Aug; 203():163-169. PubMed ID: 30522788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The development of a new windowless XEDS detector.
    Isakozawa S; Kaji K; Tamura K; Zhang XF; Sandborg A; Baba N
    J Electron Microsc (Tokyo); 2010; 59(6):469-72. PubMed ID: 20530475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The f-ratio model for quantitative X-ray microanalysis.
    Teng C; Gauvin R
    Talanta; 2021 Dec; 235():122765. PubMed ID: 34517626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. X-ray spectral simulation and experimental detection of phosphorus segregation to grain boundaries in the presence of molybdenum.
    Papworth AJ; Watanabe M; Williams DB
    Ultramicroscopy; 2001 Sep; 88(4):265-74. PubMed ID: 11545322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extending ζ-factor microanalysis to boron-rich ceramics: Quantification of bulk stoichiometry and grain boundary composition.
    Marvel CJ; Behler KD; LaSalvia JC; Domnich V; Haber RA; Watanabe M; Harmer MP
    Ultramicroscopy; 2019 Jul; 202():163-172. PubMed ID: 31078950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Principles of X-ray microanalysis in biology.
    Chandler JA
    Scan Electron Microsc; 1979; (2):595-606, 618. PubMed ID: 392720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative thin-film x-ray microanalysis by STEM/HAADF: statistical analysis for precision and accuracy determination.
    Armigliato A; Balboni R; Rosa R
    Microsc Microanal; 2006 Aug; 12(4):318-21. PubMed ID: 16842645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diagnosis of electrocution: The application of scanning electron microscope and energy-dispersive X-ray spectroscopy in five cases.
    Visonà SD; Chen Y; Bernardi P; Andrello L; Osculati A
    Forensic Sci Int; 2018 Mar; 284():107-116. PubMed ID: 29408719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analytical formulae for calculation of X-ray detector solid angles in the scanning and scanning/transmission analytical electron microscope.
    Zaluzec NJ
    Microsc Microanal; 2014 Aug; 20(4):1318-26. PubMed ID: 24848939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Barriers to Quantitative Electron Probe X-Ray Microanalysis for Low Voltage Scanning Electron Microscopy.
    Newbury DE
    J Res Natl Inst Stand Technol; 2002; 107(6):605-19. PubMed ID: 27446755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advanced mercuric iodide detectors for X-ray microanalysis.
    Warburton WK; Iwanczyk JS
    Scanning Microsc Suppl; 1987; 1():135-50. PubMed ID: 3481104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microscopy and microanalysis of complex nanosized strengthening precipitates in new generation commercial Al-Cu-Li alloys.
    Guinel MJ; Brodusch N; Sha G; Shandiz MA; Demers H; Trudeau M; Ringer SP; Gauvin R
    J Microsc; 2014 Sep; 255(3):128-37. PubMed ID: 24894808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cells on biomaterials--some aspects of elemental analysis by means of electron probes.
    Tylko G
    J Microsc; 2016 Feb; 261(2):185-95. PubMed ID: 26444561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-consistent absorption correction for quantifying very noisy X-ray maps: group III nitride nanowires as an example.
    Wang X; Bai J; Walther T
    J Microsc; 2018 Nov; 272(2):111-122. PubMed ID: 30129975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New pathways for improved quantification of energy-dispersive X-ray spectra of semiconductors with multiple X-ray lines from thin foils investigated in transmission electron microscopy.
    Parri MC; Qiu Y; Walther T
    J Microsc; 2015 Dec; 260(3):427-41. PubMed ID: 26769195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy dispersive X-ray microanalysis, neutron activation analysis and atomic absorption spectrometry--comparison using biological specimens.
    Wróblewski R; Wroblewski J; Lundström H; Edström L; Jansson E
    Scanning Microsc; 1989 Jun; 3(2):467-72. PubMed ID: 2814396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.