BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 10445501)

  • 21. Modulation of activin A-induced differentiation in vitro by vascular endothelial growth factor in Xenopus presumptive ectodermal cells.
    Yoshida S; Furue M; Nagamine K; Abe T; Fukui Y; Myoishi Y; Fujii T; Okamoto T; Taketani Y; Asashima M
    In Vitro Cell Dev Biol Anim; 2005; 41(3-4):104-10. PubMed ID: 16029071
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Disruption of BMP signals in embryonic Xenopus ectoderm leads to direct neural induction.
    Hawley SH; Wünnenberg-Stapleton K; Hashimoto C; Laurent MN; Watabe T; Blumberg BW; Cho KW
    Genes Dev; 1995 Dec; 9(23):2923-35. PubMed ID: 7498789
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Activin induces the expression of the Xenopus homologue of sonic hedgehog during mesoderm formation in Xenopus explants.
    Yokotal C; Mukasa T; Higashi M; Odaka A; Muroya K; Uchiyama H; Eto Y; Asashima M; Momoi T
    Biochem Biophys Res Commun; 1995 Feb; 207(1):1-7. PubMed ID: 7857250
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Activin as a morphogen in Xenopus mesoderm induction.
    McDowell N; Gurdon JB
    Semin Cell Dev Biol; 1999 Jun; 10(3):311-7. PubMed ID: 10441545
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two-step induction of primitive erythrocytes in Xenopus laevis embryos: signals from the vegetal endoderm and the overlying ectoderm.
    Kikkawa M; Yamazaki M; Izutsu Y; Maéno M
    Int J Dev Biol; 2001 Apr; 45(2):387-96. PubMed ID: 11330858
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Induction of cells expressing vascular endothelium markers from undifferentiated Xenopus presumptive ectoderm by co-treatment with activin and angiopoietin-2.
    Nagamine K; Furue M; Fukui A; Asashima M
    Zoolog Sci; 2005 Jul; 22(7):755-61. PubMed ID: 16082164
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Slow emergence of a multithreshold response to activin requires cell-contact-dependent sharpening but not prepattern.
    Green JB; Smith JC; Gerhart JC
    Development; 1994 Aug; 120(8):2271-8. PubMed ID: 7925027
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Activin and its receptors during gastrulation and the later phases of mesoderm development in the chick embryo.
    Stern CD; Yu RT; Kakizuka A; Kintner CR; Mathews LS; Vale WW; Evans RM; Umesono K
    Dev Biol; 1995 Nov; 172(1):192-205. PubMed ID: 7589799
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of gastrulation: different types of gastrulation movement are induced by different mesoderm-inducing factors in Xenopus laevis.
    Howard JE; Smith JC
    Mech Dev; 1993 Sep; 43(1):37-48. PubMed ID: 8240971
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of injected inhibitors of microfilament and microtubule function on the gastrulation movement in Xenopus laevis.
    Nakatsuji N
    Dev Biol; 1979 Jan; 68(1):140-50. PubMed ID: 571368
    [No Abstract]   [Full Text] [Related]  

  • 31. Comparison of mesoderm-inducing activity with monomeric and dimeric inhibin alpha and beta-A subunits on Xenopus ectoderm.
    Nakano H; Uchiyama H; Fukui A; Sugino H; Asashima M
    Horm Res; 1995; 44 Suppl 2():15-22. PubMed ID: 7672775
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Negative regulation of Activin/Nodal signaling by SRF during Xenopus gastrulation.
    Yun CH; Choi SC; Park E; Kim SJ; Chung AS; Lee HK; Lee HJ; Han JK
    Development; 2007 Feb; 134(4):769-77. PubMed ID: 17259304
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Anteroposterior neural tissue specification by activin-induced mesoderm.
    Green JB; Cook TL; Smith JC; Grainger RM
    Proc Natl Acad Sci U S A; 1997 Aug; 94(16):8596-601. PubMed ID: 9238022
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of avian cardiac myogenesis by activin/TGFbeta and bone morphogenetic proteins.
    Ladd AN; Yatskievych TA; Antin PB
    Dev Biol; 1998 Dec; 204(2):407-19. PubMed ID: 9882479
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mesoderm-inducing factors and the control of gastrulation.
    Smith JC; Howard JE
    Dev Suppl; 1992; ():127-36. PubMed ID: 1299357
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A role for Xlim-1 in pronephros development in Xenopus laevis.
    Chan TC; Takahashi S; Asashima M
    Dev Biol; 2000 Dec; 228(2):256-69. PubMed ID: 11112328
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Temporal transcriptomic profiling reveals dynamic changes in gene expression of Xenopus animal cap upon activin treatment.
    Satou-Kobayashi Y; Kim JD; Fukamizu A; Asashima M
    Sci Rep; 2021 Jul; 11(1):14537. PubMed ID: 34267234
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ventral mesodermal patterning in Xenopus embryos: expression patterns and activities of BMP-2 and BMP-4.
    Hemmati-Brivanlou A; Thomsen GH
    Dev Genet; 1995; 17(1):78-89. PubMed ID: 7554498
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A novel mesoderm inducer, Madr2, functions in the activin signal transduction pathway.
    Baker JC; Harland RM
    Genes Dev; 1996 Aug; 10(15):1880-9. PubMed ID: 8756346
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Induction of neuronal differentiation by planar signals in Xenopus embryos.
    Sater AK; Steinhardt RA; Keller R
    Dev Dyn; 1993 Aug; 197(4):268-80. PubMed ID: 8292824
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.