BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 10445682)

  • 1. Ascorbate and dehydroascorbate modulate nitric oxide-induced vasodilations of rat coronary arteries.
    Murphy ME
    J Cardiovasc Pharmacol; 1999 Aug; 34(2):295-303. PubMed ID: 10445682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of ascorbic acid in the modulation of inhibition of platelet aggregation by polymorphonuclear leukocytes.
    Raghavan SA; Sharma P; Dikshit M
    Thromb Res; 2003 May; 110(2-3):117-26. PubMed ID: 12893026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. cGMP-mediated negative-feedback regulation of endothelial nitric oxide synthase expression by nitric oxide.
    Vaziri ND; Wang XQ
    Hypertension; 1999 Dec; 34(6):1237-41. PubMed ID: 10601124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of redox compounds on nitrovasodilator-induced relaxations of rat coronary arteries.
    Murphy ME
    Br J Pharmacol; 1999 Sep; 128(2):435-43. PubMed ID: 10510455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relaxant effect of C-type natriuretic peptide involves endothelium and nitric oxide-cGMP system in rat coronary microvasculature.
    Brunner F; Wölkart G
    Cardiovasc Res; 2001 Aug; 51(3):577-84. PubMed ID: 11476748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of sulfhydryl-dependent dimerization of soluble guanylyl cyclase in relaxation of porcine coronary artery to nitric oxide.
    Zheng X; Ying L; Liu J; Dou D; He Q; Leung SW; Man RY; Vanhoutte PM; Gao Y
    Cardiovasc Res; 2011 Jun; 90(3):565-72. PubMed ID: 21248051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. cAMP-independent dilation of coronary arterioles to adenosine : role of nitric oxide, G proteins, and K(ATP) channels.
    Hein TW; Kuo L
    Circ Res; 1999 Oct; 85(7):634-42. PubMed ID: 10506488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly (I:C) impairs NO donor-induced relaxation by overexposure to NO via the NF-kappa B/iNOS pathway in rat superior mesenteric arteries.
    Ando M; Matsumoto T; Taguchi K; Kobayashi T
    Free Radic Biol Med; 2017 Nov; 112():553-566. PubMed ID: 28870522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation by calcium of the nitric oxide/cyclic GMP system in cerebellar granule cells and astroglia in culture.
    Baltrons MA; Saadoun S; Agulló L; García A
    J Neurosci Res; 1997 Aug; 49(3):333-41. PubMed ID: 9260744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autoregulation of nitric oxide-soluble guanylate cyclase-cyclic GMP signalling in mouse thoracic aorta.
    Hussain MB; Hobbs AJ; MacAllister RJ
    Br J Pharmacol; 1999 Nov; 128(5):1082-8. PubMed ID: 10556946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of ascorbic acid and sodium ascorbate on cyclic nucleotide metabolism in human lymphocytes.
    Atkinson JP; Weiss A; Ito M; Kelly J; Parker CW
    J Cyclic Nucleotide Res; 1979; 5(2):107-23. PubMed ID: 36416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. P2Y(1) and P2Y(2) receptors are coupled to the NO/cGMP pathway to vasodilate the rat arterial mesenteric bed.
    Buvinic S; Briones R; Huidobro-Toro JP
    Br J Pharmacol; 2002 Jul; 136(6):847-56. PubMed ID: 12110609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. cGMP-dependent protein kinase in regulation of basal tone and in nitroglycerin- and nitric-oxide-induced relaxation in porcine coronary artery.
    Qin X; Zheng X; Qi H; Dou D; Raj JU; Gao Y
    Pflugers Arch; 2007 Sep; 454(6):913-23. PubMed ID: 17377806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium channel activation facilitated by nitric oxide in retinal ganglion cells.
    Hirooka K; Kourennyi DE; Barnes S
    J Neurophysiol; 2000 Jan; 83(1):198-206. PubMed ID: 10634867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of cAMP-mediated vasorelaxation by endothelial nitric oxide and basal cGMP in vascular smooth muscle.
    Toyoshima H; Nasa Y; Hashizume Y; Koseki Y; Isayama Y; Kohsaka Y; Yamada T; Takeo S
    J Cardiovasc Pharmacol; 1998 Oct; 32(4):543-51. PubMed ID: 9781922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction of nitric oxide release by interferon-gamma inhibits vasodilation and cyclic GMP increase in bovine isolated mesenteric arteries.
    De Kimpe SJ; Van Heuven-Nolsen D; van Amsterdam JG; Radomski MW; Nijkamp FP
    J Pharmacol Exp Ther; 1994 Feb; 268(2):910-5. PubMed ID: 7509393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ascorbate-mediated transplasma membrane electron transport in pulmonary arterial endothelial cells.
    Merker MP; Olson LE; Bongard RD; Patel MK; Linehan JH; Dawson CA
    Am J Physiol; 1998 May; 274(5):L685-93. PubMed ID: 9612283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different influences of extracellular and intracellular superoxide on relaxation through the NO/sGC/cGMP pathway in isolated rat iliac arteries.
    Tawa M; Shimosato T; Iwasaki H; Imamura T; Okamura T
    J Cardiovasc Pharmacol; 2015 Feb; 65(2):160-7. PubMed ID: 25329747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of nitric oxide-induced vasodilation by gap junction inhibitors: a potential role for a cGMP-independent nitric oxide pathway.
    Javid PJ; Watts SW; Webb RC
    J Vasc Res; 1996; 33(5):395-404. PubMed ID: 8862145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of hydrogen peroxide on relaxation through the NO/sGC/cGMP pathway in isolated rat iliac arteries.
    Tawa M; Shimosato T; Iwasaki H; Imamura T; Okamura T
    Free Radic Res; 2015; 49(12):1479-87. PubMed ID: 26334090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.