These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 10445742)

  • 1. Selection of a rechargeable internal back-up battery for a totally implantable artificial heart.
    Honda H; Shiba K; Shu E; Koshiji K; Murai T; Nakamura T; Masuzawa T; Tatsumi E; Taenaka Y; Takano H
    ASAIO J; 1999; 45(4):339-43. PubMed ID: 10445742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A transcutaneous energy transmission system with rechargeable internal back-up battery for a totally implantable total artificial heart.
    Shiba K; Shu E; Koshiji K; Tsukahara K; Nakamura T; Masuzawa T; Tatsumi E; Taenaka Y; Takano H
    ASAIO J; 1999; 45(5):466-70. PubMed ID: 10503627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimum selection of an implantable secondary battery for an artificial heart by examination of the cycle life test.
    Okamoto E; Watanabe K; Hashiba K; Inoue T; Iwazawa E; Momoi M; Hashimoto T; Mitamura Y
    ASAIO J; 2002; 48(5):495-502. PubMed ID: 12296569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of heat generation of lithium ion rechargeable batteries used in implantable battery systems for driving undulation pump ventricular assist device.
    Okamoto E; Nakamura M; Akasaka Y; Inoue Y; Abe Y; Chinzei T; Saito I; Isoyama T; Mochizuki S; Imachi K; Mitamura Y
    Artif Organs; 2007 Jul; 31(7):538-41. PubMed ID: 17584478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility of a nickel-metal hydride battery for totally implantable artificial hearts.
    Okamoto E; Yoshida T; Fujiyoshi M; Shimanaka M; Takeuchi A; Mitamura Y; Mikami T
    ASAIO J; 1996; 42(5):M332-7. PubMed ID: 8944901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Life testing of implantable batteries for a total artificial heart.
    Powers RA; Wolga AE; Ochs BD; Yu LS; Kung RT
    ASAIO J; 1993; 39(3):M663-7. PubMed ID: 8268621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact on global metal flows arising from the use of portable rechargeable batteries.
    Rydh CJ; Svärd B
    Sci Total Environ; 2003 Jan; 302(1-3):167-84. PubMed ID: 12526907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of an implantable high-energy and compact battery system for artificial heart.
    Okamoto E; Inoue T; Watanabe K; Hashimoto T; Iwazawa E; Abe Y; Chinzei T; Isoyama T; Kobayashi S; Saito I; Sato F; Matsuki H; Imachi K; Mitamura Y
    Artif Organs; 2003 Feb; 27(2):184-8. PubMed ID: 12580777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid Energy Storage of Ni(OH)
    Sirisinudomkit P; Iamprasertkun P; Krittayavathananon A; Pettong T; Dittanet P; Sawangphruk M
    Sci Rep; 2017 Apr; 7(1):1124. PubMed ID: 28442728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A New Perspective on Li-SO2 Batteries for Rechargeable Systems.
    Lim HD; Park H; Kim H; Kim J; Lee B; Bae Y; Gwon H; Kang K
    Angew Chem Int Ed Engl; 2015 Aug; 54(33):9663-7. PubMed ID: 26140701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Totally implantable total artificial heart and ventricular assist device with multipurpose miniature electromechanical energy system.
    Takatani S; Orime Y; Tasai K; Ohara Y; Naito K; Mizuguchi K; Makinouchi K; Damm G; Glueck J; Ling J
    Artif Organs; 1994 Jan; 18(1):80-92. PubMed ID: 8141662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Progress of an electrohydraulic total artificial heart system with a separate energy converter.
    Masuzawa T; Tatsumi E; Taenaka Y; Nakamura M; Endo S; Takano H; Koshiji K; Fukui Y; Murai T; Tsukahara K
    ASAIO J; 1999; 45(5):471-7. PubMed ID: 10503628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual-Graphene Rechargeable Sodium Battery.
    Wang F; Liu Z; Zhang P; Li H; Sheng W; Zhang T; Jordan R; Wu Y; Zhuang X; Feng X
    Small; 2017 Dec; 13(47):. PubMed ID: 29076650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transforming a Primary Li-SOCl
    Chen G; Li W; Du X; Wang C; Qu X; Gao X; Dong S; Cui G; Chen L
    J Am Chem Soc; 2023 Oct; 145(40):22158-22167. PubMed ID: 37779473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First-Principles Study of Lithium Borocarbide as a Cathode Material for Rechargeable Li ion Batteries.
    Xu Q; Ban C; Dillon AC; Wei SH; Zhao Y
    J Phys Chem Lett; 2011 May; 2(10):1129-32. PubMed ID: 26295314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of strategies for modern rechargeable batteries.
    Goodenough JB
    Acc Chem Res; 2013 May; 46(5):1053-61. PubMed ID: 22746097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activated Li2S as a High-Performance Cathode for Rechargeable Lithium-Sulfur Batteries.
    Zu C; Klein M; Manthiram A
    J Phys Chem Lett; 2014 Nov; 5(22):3986-91. PubMed ID: 26276482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prelithiation Activates Fe
    Wang N; Yuan H; NuLi Y; Yang J; Wang J
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38455-38466. PubMed ID: 29048156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intelligent Li ion battery management based on a digital signal processor for a moving actuator total artificial heart.
    Kim WE; Ahn JM; Choi SW; Min BG
    ASAIO J; 1997; 43(5):M588-92. PubMed ID: 9360113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.