BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 10446175)

  • 1. Tubulin folding cofactors as GTPase-activating proteins. GTP hydrolysis and the assembly of the alpha/beta-tubulin heterodimer.
    Tian G; Bhamidipati A; Cowan NJ; Lewis SA
    J Biol Chem; 1999 Aug; 274(34):24054-8. PubMed ID: 10446175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tubulin subunits exist in an activated conformational state generated and maintained by protein cofactors.
    Tian G; Lewis SA; Feierbach B; Stearns T; Rommelaere H; Ampe C; Cowan NJ
    J Cell Biol; 1997 Aug; 138(4):821-32. PubMed ID: 9265649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The alpha- and beta-tubulin folding pathways.
    Lewis SA; Tian G; Cowan NJ
    Trends Cell Biol; 1997 Dec; 7(12):479-84. PubMed ID: 17709011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tubulin-specific chaperones: components of a molecular machine that assembles the α/β heterodimer.
    Tian G; Cowan NJ
    Methods Cell Biol; 2013; 115():155-71. PubMed ID: 23973072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ADP ribosylation factor-like protein 2 (Arl2) regulates the interaction of tubulin-folding cofactor D with native tubulin.
    Bhamidipati A; Lewis SA; Cowan NJ
    J Cell Biol; 2000 May; 149(5):1087-96. PubMed ID: 10831612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chaperonin-mediated folding of vertebrate actin-related protein and gamma-tubulin.
    Melki R; Vainberg IE; Chow RL; Cowan NJ
    J Cell Biol; 1993 Sep; 122(6):1301-10. PubMed ID: 8104191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pathway leading to correctly folded beta-tubulin.
    Tian G; Huang Y; Rommelaere H; Vandekerckhove J; Ampe C; Cowan NJ
    Cell; 1996 Jul; 86(2):287-96. PubMed ID: 8706133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 14 kDa release factor is involved in GTP-dependent beta-tubulin folding.
    Campo R; Fontalba A; Sanchez LM; Zabala JC
    FEBS Lett; 1994 Oct; 353(2):162-6. PubMed ID: 7926043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissociation of the tubulin dimer is extremely slow, thermodynamically very unfavorable, and reversible in the absence of an energy source.
    Caplow M; Fee L
    Mol Biol Cell; 2002 Jun; 13(6):2120-31. PubMed ID: 12058074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporation of tubulin subunits into dimers requires GTP hydrolysis.
    Fontalba A; Paciucci R; Avila J; Zabala JC
    J Cell Sci; 1993 Oct; 106 ( Pt 2)():627-32. PubMed ID: 8282766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quasi-native chaperonin-bound intermediates in facilitated protein folding.
    Tian G; Vainberg IE; Tap WD; Lewis SA; Cowan NJ
    J Biol Chem; 1995 Oct; 270(41):23910-3. PubMed ID: 7592580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamic and structural analysis of microtubule assembly: the role of GTP hydrolysis.
    Vulevic B; Correia JJ
    Biophys J; 1997 Mar; 72(3):1357-75. PubMed ID: 9138581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of TBCD and its regulatory interactor Arl2 on tubulin and microtubule integrity.
    Tian G; Thomas S; Cowan NJ
    Cytoskeleton (Hoboken); 2010 Nov; 67(11):706-14. PubMed ID: 20740604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cofactor A is a molecular chaperone required for beta-tubulin folding: functional and structural characterization.
    Melki R; Rommelaere H; Leguy R; Vandekerckhove J; Ampe C
    Biochemistry; 1996 Aug; 35(32):10422-35. PubMed ID: 8756698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dissection of GTP exchange and hydrolysis within the ternary complex of tubulin heterodimers and Op18/stathmin family members.
    Brännström K; Segerman B; Gullberg M
    J Biol Chem; 2003 May; 278(19):16651-7. PubMed ID: 12606544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Newly-synthesized beta-tubulin demonstrates domain-specific interactions with the cytosolic chaperonin.
    Dobrzynski JK; Sternlicht ML; Farr GW; Sternlicht H
    Biochemistry; 1996 Dec; 35(49):15870-82. PubMed ID: 8961952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The dual role of fission yeast Tbc1/cofactor C orchestrates microtubule homeostasis in tubulin folding and acts as a GAP for GTPase Alp41/Arl2.
    Mori R; Toda T
    Mol Biol Cell; 2013 Jun; 24(11):1713-24, S1-8. PubMed ID: 23576550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleotide Binding to ARL2 in the TBCD∙ARL2∙β-Tubulin Complex Drives Conformational Changes in β-Tubulin.
    Francis JW; Goswami D; Novick SJ; Pascal BD; Weikum ER; Ortlund EA; Griffin PR; Kahn RA
    J Mol Biol; 2017 Nov; 429(23):3696-3716. PubMed ID: 28970104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-directed mutagenesis of putative GTP-binding sites of yeast beta-tubulin: evidence that alpha-, beta-, and gamma-tubulins are atypical GTPases.
    Sage CR; Dougherty CA; Davis AS; Burns RG; Wilson L; Farrell KW
    Biochemistry; 1995 Jun; 34(22):7409-19. PubMed ID: 7779783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of 300 kDa complexes as intermediates in tubulin folding and dimerization: characterization of a 25 kDa cytosolic protein involved in the GTP-dependent release of monomeric tubulin.
    Paciucci R
    Biochem J; 1994 Jul; 301 ( Pt 1)(Pt 1):105-10. PubMed ID: 8037656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.