These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 10446248)

  • 1. Translation in Bacillus subtilis: roles and trends of initiation and termination, insights from a genome analysis.
    Rocha EP; Danchin A; Viari A
    Nucleic Acids Res; 1999 Sep; 27(17):3567-76. PubMed ID: 10446248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of the 5' codon context on translation termination in Bacillus subtilis and Escherichia coli is similar but different from Salmonella typhimurium.
    Mottagui-Tabar S; Isaksson LA
    Gene; 1998 Jun; 212(2):189-96. PubMed ID: 9611261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective differences among translation termination codons.
    Sharp PM; Bulmer M
    Gene; 1988; 63(1):141-5. PubMed ID: 3133285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of ribosome-binding-site elements on translational efficiency in Bacillus subtilis and Escherichia coli in vivo.
    Vellanoweth RL; Rabinowitz JC
    Mol Microbiol; 1992 May; 6(9):1105-14. PubMed ID: 1375309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Association of the phi nucleotide with codon bias, amino acid usage and expressivity: differences between Bacillus subtilis and Escherichia coli.
    Fuglsang A
    APMIS; 2003 Oct; 111(10):926-30. PubMed ID: 14616543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synonymous codon usage in Bacillus subtilis reflects both translational selection and mutational biases.
    Shields DC; Sharp PM
    Nucleic Acids Res; 1987 Oct; 15(19):8023-40. PubMed ID: 3118331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective forces and mutational biases drive stop codon usage in the human genome: a comparison with sense codon usage.
    Trotta E
    BMC Genomics; 2016 May; 17():366. PubMed ID: 27188984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of genomic G + C content, codon usage, initiator codon context and translation termination sites in Tetrahymena thermophila.
    Wuitschick JD; Karrer KM
    J Eukaryot Microbiol; 1999; 46(3):239-47. PubMed ID: 10377985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gradients in nucleotide and codon usage along Escherichia coli genes.
    Hooper SD; Berg OG
    Nucleic Acids Res; 2000 Sep; 28(18):3517-23. PubMed ID: 10982871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Naturally occurring adenines within mRNA coding sequences affect ribosome binding and expression in Escherichia coli.
    Brock JE; Paz RL; Cottle P; Janssen GR
    J Bacteriol; 2007 Jan; 189(2):501-10. PubMed ID: 17085569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The signal for the termination of protein synthesis in procaryotes.
    Brown CM; Stockwell PA; Trotman CN; Tate WP
    Nucleic Acids Res; 1990 Apr; 18(8):2079-86. PubMed ID: 2186375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patterns of codon usage in two ciliates that reassign the genetic code: Tetrahymena thermophila and Paramecium tetraurelia.
    Salim HM; Ring KL; Cavalcanti AR
    Protist; 2008 Apr; 159(2):283-98. PubMed ID: 18207458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three, four or more: the translational stop signal at length.
    Tate WP; Mannering SA
    Mol Microbiol; 1996 Jul; 21(2):213-9. PubMed ID: 8858577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial start site prediction.
    Hannenhalli SS; Hayes WS; Hatzigeorgiou AG; Fickett JW
    Nucleic Acids Res; 1999 Sep; 27(17):3577-82. PubMed ID: 10446249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Codon and base biases after the initiation codon of the open reading frames in the Escherichia coli genome and their influence on the translation efficiency.
    Sato T; Terabe M; Watanabe H; Gojobori T; Hori-Takemoto C; Miura Ki
    J Biochem; 2001 Jun; 129(6):851-60. PubMed ID: 11388898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cis control of gene expression in E.coli by ribosome queuing at an inefficient translational stop signal.
    Jin H; Björnsson A; Isaksson LA
    EMBO J; 2002 Aug; 21(16):4357-67. PubMed ID: 12169638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Initiator AUGs Are Discriminated from Elongator AUGs Predominantly through mRNA Accessibility in C. crescentus.
    Ghosh A; Bharmal MM; Ghaleb AM; Nandana V; Schrader JM
    J Bacteriol; 2023 May; 205(5):e0042022. PubMed ID: 37092987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How Changes in Anti-SD Sequences Would Affect SD Sequences in
    Abolbaghaei A; Silke JR; Xia X
    G3 (Bethesda); 2017 May; 7(5):1607-1615. PubMed ID: 28364038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Basis for Translation Termination on a Pseudouridylated Stop Codon.
    Svidritskiy E; Madireddy R; Korostelev AA
    J Mol Biol; 2016 May; 428(10 Pt B):2228-36. PubMed ID: 27107638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of translational signals on mRNA decay in Bacillus subtilis.
    Sharp JS; Bechhofer DH
    J Bacteriol; 2003 Sep; 185(18):5372-9. PubMed ID: 12949089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.