These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 10446298)

  • 1. Pore-forming action of mastoparan peptides on liposomes: a quantitative analysis.
    Arbuzova A; Schwarz G
    Biochim Biophys Acta; 1999 Aug; 1420(1-2):139-52. PubMed ID: 10446298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pore kinetics reflected in the dequenching of a lipid vesicle entrapped fluorescent dye.
    Schwarz G; Arbuzova A
    Biochim Biophys Acta; 1995 Oct; 1239(1):51-7. PubMed ID: 7548144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative studies on the melittin-induced leakage mechanism of lipid vesicles.
    Rex S; Schwarz G
    Biochemistry; 1998 Feb; 37(8):2336-45. PubMed ID: 9485380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptide-liposome association. A critical examination with mastoparan-X.
    Hellmann N; Schwarz G
    Biochim Biophys Acta; 1998 Mar; 1369(2):267-77. PubMed ID: 9518645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Association of the wasp venom peptide mastoparan with electrically neutral lipid vesicles. Salt effects on partitioning and conformational state.
    Schwarz G; Blochmann U
    FEBS Lett; 1993 Mar; 318(2):172-6. PubMed ID: 8440373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New insight into the mechanism of action of wasp mastoparan peptides: lytic activity and clustering observed with giant vesicles.
    Cabrera MP; Alvares DS; Leite NB; de Souza BM; Palma MS; Riske KA; Neto JR
    Langmuir; 2011 Sep; 27(17):10805-13. PubMed ID: 21797216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selectivity in the mechanism of action of antimicrobial mastoparan peptide Polybia-MP1.
    dos Santos Cabrera MP; Costa ST; de Souza BM; Palma MS; Ruggiero JR; Ruggiero Neto J
    Eur Biophys J; 2008 Jul; 37(6):879-91. PubMed ID: 18414845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orientation of the pore-forming peptide GALA in POPC vesicles determined by a BODIPY-avidin/biotin binding assay.
    Nicol F; Nir S; Szoka FC
    Biophys J; 1999 Apr; 76(4):2121-41. PubMed ID: 10096907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel biologically active peptides from the venom of Polistes rothneyi iwatai.
    Murata K; Shinada T; Ohfune Y; Hisada M; Yasuda A; Naoki H; Nakajima T
    Biol Pharm Bull; 2006 Dec; 29(12):2493-7. PubMed ID: 17142988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of N-terminal acetylation on lytic activity and lipid-packing perturbation induced in model membranes by a mastoparan-like peptide.
    Alvares DS; Wilke N; Ruggiero Neto J
    Biochim Biophys Acta Biomembr; 2018 Mar; 1860(3):737-748. PubMed ID: 29287697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of dye efflux and lipid flip-flop induced by delta-lysin in phosphatidylcholine vesicles and the mechanism of graded release by amphipathic, alpha-helical peptides.
    Pokorny A; Almeida PF
    Biochemistry; 2004 Jul; 43(27):8846-57. PubMed ID: 15236593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of the bilayer composition on the binding and membrane disrupting effect of Polybia-MP1, an antimicrobial mastoparan peptide with leukemic T-lymphocyte cell selectivity.
    dos Santos Cabrera MP; Arcisio-Miranda M; Gorjão R; Leite NB; de Souza BM; Curi R; Procopio J; Ruggiero Neto J; Palma MS
    Biochemistry; 2012 Jun; 51(24):4898-908. PubMed ID: 22630563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of wasp venom mastoparan with biomembranes.
    Katsu T; Kuroko M; Morikawa T; Sanchika K; Yamanaka H; Shinoda S; Fujita Y
    Biochim Biophys Acta; 1990 Aug; 1027(2):185-90. PubMed ID: 2204429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transbilayer transport of ions and lipids coupled with mastoparan X translocation.
    Matsuzaki K; Yoneyama S; Murase O; Miyajima K
    Biochemistry; 1996 Jun; 35(25):8450-6. PubMed ID: 8679603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pore formation and translocation of melittin.
    Matsuzaki K; Yoneyama S; Miyajima K
    Biophys J; 1997 Aug; 73(2):831-8. PubMed ID: 9251799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of the interaction of amphipathic alpha-helical peptides with phosphatidylcholines.
    McLean LR; Hagaman KA
    Biochim Biophys Acta; 1993 Apr; 1167(3):289-95. PubMed ID: 8481390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational analysis of a 12-residue analogue of mastoparan and of mastoparan X.
    Faerman CH; Ripoll DR
    Proteins; 1992 Feb; 12(2):111-6. PubMed ID: 1603800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unwrapping the structural and functional features of antimicrobial peptides from wasp venoms.
    Duque HM; Dos Santos C; Brango-Vanegas J; Díaz-Martín RD; Dias SC; Franco OL
    Pharmacol Res; 2024 Feb; 200():107069. PubMed ID: 38218356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of the adhesion of DMPC liposomes on a mercury electrode. Effect of lamellarity, phase composition, size and curvature of liposomes, and presence of the pore forming peptide mastoparan X.
    Hernandez VA; Scholz F
    Langmuir; 2006 Dec; 22(25):10723-31. PubMed ID: 17129052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversible surface aggregation in pore formation by pardaxin.
    Rapaport D; Peled R; Nir S; Shai Y
    Biophys J; 1996 Jun; 70(6):2502-12. PubMed ID: 8744290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.