BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 10447238)

  • 21. Prox1 interacts with Atoh1 and Gfi1, and regulates cellular differentiation in the inner ear sensory epithelia.
    Kirjavainen A; Sulg M; Heyd F; Alitalo K; Ylä-Herttuala S; Möröy T; Petrova TV; Pirvola U
    Dev Biol; 2008 Oct; 322(1):33-45. PubMed ID: 18652815
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differential expression of espin isoforms during epithelial morphogenesis, stereociliogenesis and postnatal maturation in the developing inner ear.
    Sekerková G; Zheng L; Mugnaini E; Bartles JR
    Dev Biol; 2006 Mar; 291(1):83-95. PubMed ID: 16413524
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Overlapping and distinct pRb pathways in the mammalian auditory and vestibular organs.
    Huang M; Sage C; Tang Y; Lee SG; Petrillo M; Hinds PW; Chen ZY
    Cell Cycle; 2011 Jan; 10(2):337-51. PubMed ID: 21239885
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Insm1 promotes neurogenic proliferation in delaminated otic progenitors.
    Lorenzen SM; Duggan A; Osipovich AB; Magnuson MA; García-Añoveros J
    Mech Dev; 2015 Nov; 138 Pt 3():233-45. PubMed ID: 26545349
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Expression profiles of the connexin genes, Gjb1 and Gjb3, in the developing mouse cochlea.
    López-Bigas N; Arbonés ML; Estivill X; Simonneau L
    Gene Expr Patterns; 2002 Nov; 2(1-2):113-7. PubMed ID: 12617848
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Eya1 expression in the developing ear and kidney: towards the understanding of the pathogenesis of Branchio-Oto-Renal (BOR) syndrome.
    Kalatzis V; Sahly I; El-Amraoui A; Petit C
    Dev Dyn; 1998 Dec; 213(4):486-99. PubMed ID: 9853969
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Glial but not neuronal development in the cochleo-vestibular ganglion requires Sox10.
    Breuskin I; Bodson M; Thelen N; Thiry M; Borgs L; Nguyen L; Stolt C; Wegner M; Lefebvre PP; Malgrange B
    J Neurochem; 2010 Sep; 114(6):1827-39. PubMed ID: 20626560
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential glycosylation of auditory and vestibular hair bundle proteins revealed by peanut agglutinin.
    Goodyear R; Richardson G
    J Comp Neurol; 1994 Jul; 345(2):267-78. PubMed ID: 7929901
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Immunohistochemical localization of S-100 protein in auditory and vestibular end organs of the mouse and hamster.
    Foster JD; Drescher MJ; Hatfield JS; Drescher DG
    Hear Res; 1994 Apr; 74(1-2):67-76. PubMed ID: 8040100
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sensory organ generation in the chicken inner ear: contributions of bone morphogenetic protein 4, serrate1, and lunatic fringe.
    Cole LK; Le Roux I; Nunes F; Laufer E; Lewis J; Wu DK
    J Comp Neurol; 2000 Aug; 424(3):509-20. PubMed ID: 10906716
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cod106, a novel synaptic protein expressed in sensory hair cells of the inner ear and in CNS neurons.
    Reisinger E; Zimmermann U; Knipper M; Ludwig J; Klöcker N; Fakler B; Oliver D
    Mol Cell Neurosci; 2005 Jan; 28(1):106-17. PubMed ID: 15607946
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential distribution of stem cells in the auditory and vestibular organs of the inner ear.
    Oshima K; Grimm CM; Corrales CE; Senn P; Martinez Monedero R; Géléoc GS; Edge A; Holt JR; Heller S
    J Assoc Res Otolaryngol; 2007 Mar; 8(1):18-31. PubMed ID: 17171473
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Delta/notch-like EGF-related receptor (DNER) is expressed in hair cells and neurons in the developing and adult mouse inner ear.
    Hartman BH; Nelson BR; Reh TA; Bermingham-McDonogh O
    J Assoc Res Otolaryngol; 2010 Jun; 11(2):187-201. PubMed ID: 20058045
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Developmental expression of Ca(v)1.3 (alpha1d) calcium channels in the mouse inner ear.
    Hafidi A; Dulon D
    Brain Res Dev Brain Res; 2004 Jun; 150(2):167-75. PubMed ID: 15158080
    [TBL] [Abstract][Full Text] [Related]  

  • 35. NT-3 replacement with brain-derived neurotrophic factor redirects vestibular nerve fibers to the cochlea.
    Tessarollo L; Coppola V; Fritzsch B
    J Neurosci; 2004 Mar; 24(10):2575-84. PubMed ID: 15014133
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cloning and developmental expression of nonmuscle myosin IIA (Myh9) in the mammalian inner ear.
    Mhatre AN; Li J; Kim Y; Coling DE; Lalwani AK
    J Neurosci Res; 2004 May; 76(3):296-305. PubMed ID: 15079858
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cytodifferentiation of cochlear hair cells.
    Anniko M
    Am J Otolaryngol; 1983; 4(6):375-88. PubMed ID: 6660365
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chromatin remodeler CHD7 is critical for cochlear morphogenesis and neurosensory patterning.
    Balendran V; Skidmore JM; Ritter KE; Gao J; Cimerman J; Beyer LA; Hurd EA; Raphael Y; Martin DM
    Dev Biol; 2021 Sep; 477():11-21. PubMed ID: 34004180
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expression of transient receptor potential channel mucolipin (TRPML) and polycystine (TRPP) in the mouse inner ear.
    Takumida M; Anniko M
    Acta Otolaryngol; 2010 Feb; 130(2):196-203. PubMed ID: 20095091
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Streptomycin distribution in the internal ear structures after parenteral administration (histoautoradiographic study)].
    Anichin VF; Margolin GS
    Vestn Otorinolaringol; 1983; (3):23-8. PubMed ID: 6603044
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.