These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 10447313)

  • 21. Feeding and adrenal entrainment stimuli are both necessary for normal circadian oscillation of peripheral clocks in mice housed under different photoperiods.
    Ikeda Y; Sasaki H; Ohtsu T; Shiraishi T; Tahara Y; Shibata S
    Chronobiol Int; 2015 Mar; 32(2):195-210. PubMed ID: 25286135
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The enigma of behavioral inputs to the circadian clock: a test of function using restraint.
    Mistlberger RE; Antle MC
    Physiol Behav; 2006 May; 87(5):948-54. PubMed ID: 16580032
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Circannual phase response curves to short and long photoperiod in the European hamster.
    Monecke S; Saboureau M; Malan A; Bonn D; Masson-Pévet M; Pévet P
    J Biol Rhythms; 2009 Oct; 24(5):413-26. PubMed ID: 19755586
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential effects of constant light on circadian clock resetting by photic and nonphotic stimuli in Syrian hamsters.
    Landry GJ; Mistlberger RE
    Brain Res; 2005 Oct; 1059(1):52-8. PubMed ID: 16169532
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The progression of circadian phase during light exposure in animals and humans.
    Beersma DG; Comas M; Hut RA; Gordijn MC; Rueger M; Daan S
    J Biol Rhythms; 2009 Apr; 24(2):153-60. PubMed ID: 19346452
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Scheduled voluntary wheel running activity modulates free-running circadian body temperature rhythms in Octodon degus.
    Kas MJ; Edgar DM
    J Biol Rhythms; 2001 Feb; 16(1):66-75. PubMed ID: 11220781
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Entrainment concepts revisited.
    Roenneberg T; Hut R; Daan S; Merrow M
    J Biol Rhythms; 2010 Oct; 25(5):329-39. PubMed ID: 20876813
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simulations of light effects on the human circadian pacemaker: implications for assessment of intrinsic period.
    Klerman EB; Dijk DJ; Kronauer RE; Czeisler CA
    Am J Physiol; 1996 Jan; 270(1 Pt 2):R271-82. PubMed ID: 8769811
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Re-entrainment behavior of Djungarian hamsters (Phodopus sungorus) with different rhythmic phenotype following light-dark shifts.
    Schöttner K; Limbach A; Weinert D
    Chronobiol Int; 2011 Feb; 28(1):58-69. PubMed ID: 21182405
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Short-day response in Djungarian hamsters of different circadian phenotypes.
    Schöttner K; Schmidt M; Hering A; Schatz J; Weinert D
    Chronobiol Int; 2012 May; 29(4):430-42. PubMed ID: 22515562
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Circadian entrainment aftereffects in suprachiasmatic nuclei and peripheral tissues in vitro.
    Molyneux PC; Dahlgren MK; Harrington ME
    Brain Res; 2008 Sep; 1228():127-34. PubMed ID: 18598681
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Djungarian hamsters: a species with a labile circadian pacemaker? Arrhythmicity under a light-dark cycle induced by short light pulses.
    Steinlechner S; Stieglitz A; Ruf T
    J Biol Rhythms; 2002 Jun; 17(3):248-58. PubMed ID: 12054196
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The human circadian pacemaker can see by the dawn's early light.
    Danilenko KV; Wirz-Justice A; Kräuchi K; Weber JM; Terman M
    J Biol Rhythms; 2000 Oct; 15(5):437-46. PubMed ID: 11039921
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Daily behavioral rhythmicity and organization of the suprachiasmatic nuclei in the diurnal rodent, Lemniscomys barbarus.
    Lahmam M; El M'rabet A; Ouarour A; Pévet P; Challet E; Vuillez P
    Chronobiol Int; 2008 Nov; 25(6):882-904. PubMed ID: 19005894
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New findings regarding light intensity and its effects as a zeitgeber in the Sprague-Dawley rat.
    Tischler AC; Winget CM; Holley DC; Deroshia CW; Gott J; Mele G; Callahan PX
    Physiologist; 1993 Feb; 36(1 Suppl):S125-6. PubMed ID: 11538509
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intrinsic near-24-h pacemaker period determines limits of circadian entrainment to a weak synchronizer in humans.
    Wright KP; Hughes RJ; Kronauer RE; Dijk DJ; Czeisler CA
    Proc Natl Acad Sci U S A; 2001 Nov; 98(24):14027-32. PubMed ID: 11717461
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Circadian Clock Properties and Their Relationships as a Function of Free-Running Period in Drosophila melanogaster.
    Srivastava M; Varma V; Abhilash L; Sharma VK; Sheeba V
    J Biol Rhythms; 2019 Jun; 34(3):231-248. PubMed ID: 30939971
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exposure of pregnant rats to restricted feeding schedule synchronizes the SCN clocks of their fetuses under constant light but not under a light-dark regime.
    Nováková M; Sládek M; Sumová A
    J Biol Rhythms; 2010 Oct; 25(5):350-60. PubMed ID: 20876815
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exploring sleepiness and entrainment on permanent shift schedules in a physiologically based model.
    Postnova S; Layden A; Robinson PA; Phillips AJ; Abeysuriya RG
    J Biol Rhythms; 2012 Feb; 27(1):91-102. PubMed ID: 22306977
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The timing of the human circadian clock is accurately represented by the core body temperature rhythm following phase shifts to a three-cycle light stimulus near the critical zone.
    Khalsa SBS ; Jewett ME; Duffy JF; Czeisler CA
    J Biol Rhythms; 2000 Dec; 15(6):524-30. PubMed ID: 11106069
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.