BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

701 related articles for article (PubMed ID: 10447505)

  • 1. Evolution of aminoacyl-tRNA synthetases--analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events.
    Wolf YI; Aravind L; Grishin NV; Koonin EV
    Genome Res; 1999 Aug; 9(8):689-710. PubMed ID: 10447505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process.
    Woese CR; Olsen GJ; Ibba M; Söll D
    Microbiol Mol Biol Rev; 2000 Mar; 64(1):202-36. PubMed ID: 10704480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aminoacyl-tRNA Synthetases in the Bacterial World.
    Giegé R; Springer M
    EcoSal Plus; 2016 May; 7(1):. PubMed ID: 27223819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quest for Ancestors of Eukaryal Cells Based on Phylogenetic Analyses of Aminoacyl-tRNA Synthetases.
    Furukawa R; Nakagawa M; Kuroyanagi T; Yokobori SI; Yamagishi A
    J Mol Evol; 2017 Jan; 84(1):51-66. PubMed ID: 27889804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unusual domain architecture of aminoacyl tRNA synthetases and their paralogs from Leishmania major.
    Gowri VS; Ghosh I; Sharma A; Madhubala R
    BMC Genomics; 2012 Nov; 13():621. PubMed ID: 23151081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Origin and evolution of the mitochondrial aminoacyl-tRNA synthetases.
    Brindefalk B; Viklund J; Larsson D; Thollesson M; Andersson SG
    Mol Biol Evol; 2007 Mar; 24(3):743-56. PubMed ID: 17182897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A chimaeric glutamyl:glutaminyl-tRNA synthetase: implications for evolution.
    Saha R; Dasgupta S; Basu G; Roy S
    Biochem J; 2009 Jan; 417(2):449-55. PubMed ID: 18817520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intraphylum diversity and complex evolution of cyanobacterial aminoacyl-tRNA synthetases.
    Luque I; Riera-Alberola ML; Andújar A; Ochoa de Alda JA
    Mol Biol Evol; 2008 Nov; 25(11):2369-89. PubMed ID: 18775898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monophyly of class I aminoacyl tRNA synthetase, USPA, ETFP, photolyase, and PP-ATPase nucleotide-binding domains: implications for protein evolution in the RNA.
    Aravind L; Anantharaman V; Koonin EV
    Proteins; 2002 Jul; 48(1):1-14. PubMed ID: 12012333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aminoacyl-tRNA Synthetase Evolution within the Dynamic Tripartite Translation System of Plant Cells.
    Sloan DB; DeTar RA; Warren JM
    Genome Biol Evol; 2023 Apr; 15(4):. PubMed ID: 36951086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The complex evolutionary history of aminoacyl-tRNA synthetases.
    Chaliotis A; Vlastaridis P; Mossialos D; Ibba M; Becker HD; Stathopoulos C; Amoutzias GD
    Nucleic Acids Res; 2017 Feb; 45(3):1059-1068. PubMed ID: 28180287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A genomic glimpse of aminoacyl-tRNA synthetases in malaria parasite Plasmodium falciparum.
    Bhatt TK; Kapil C; Khan S; Jairajpuri MA; Sharma V; Santoni D; Silvestrini F; Pizzi E; Sharma A
    BMC Genomics; 2009 Dec; 10():644. PubMed ID: 20042123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aminoacyl tRNA synthetases as malarial drug targets: a comparative bioinformatics study.
    Nyamai DW; Tastan Bishop Ö
    Malar J; 2019 Feb; 18(1):34. PubMed ID: 30728021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the evolution of structure in aminoacyl-tRNA synthetases.
    O'Donoghue P; Luthey-Schulten Z
    Microbiol Mol Biol Rev; 2003 Dec; 67(4):550-73. PubMed ID: 14665676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene transfers from nanoarchaeota to an ancestor of diplomonads and parabasalids.
    Andersson JO; Sarchfield SW; Roger AJ
    Mol Biol Evol; 2005 Jan; 22(1):85-90. PubMed ID: 15356278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of aminoacyl-tRNA synthetases in infectious diseases and targets for therapeutic development.
    Dewan V; Reader J; Forsyth KM
    Top Curr Chem; 2014; 344():293-329. PubMed ID: 23666077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Paths of lateral gene transfer of lysyl-aminoacyl-tRNA synthetases with a unique evolutionary transition stage of prokaryotes coding for class I and II varieties by the same organisms.
    Shaul S; Nussinov R; Pupko T
    BMC Evol Biol; 2006 Mar; 6():22. PubMed ID: 16529662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases.
    Iyer LM; Koonin EV; Aravind L
    BMC Struct Biol; 2003 Jan; 3():1. PubMed ID: 12553882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Aminoacyl-tRNA Synthetases in Chromerids.
    Sharaf A; Gruber A; Jiroutová K; Oborník M
    Genes (Basel); 2019 Jul; 10(8):. PubMed ID: 31370303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ancient horizontal gene transfer and the last common ancestors.
    Fournier GP; Andam CP; Gogarten JP
    BMC Evol Biol; 2015 Apr; 15():70. PubMed ID: 25897759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.