These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 10447601)
1. Transformation of the bioherbicide Colletotrichum gloeosporioides f. sp. Aeschynomene By electroporation of germinated conidia. Robinson M; Sharon A Curr Genet; 1999 Aug; 36(1-2):98-104. PubMed ID: 10447601 [TBL] [Abstract][Full Text] [Related]
3. Transient transformation of Podosphaera xanthii by electroporation of conidia. Vela-Corcía D; Romero D; Torés JA; De Vicente A; Pérez-García A BMC Microbiol; 2015 Feb; 15(1):20. PubMed ID: 25651833 [TBL] [Abstract][Full Text] [Related]
4. Efficient transformation of Rhizopus delemar by electroporation of germinated spores. Xu S; Zhou Z; Du G; Zhou J; Chen J J Microbiol Methods; 2014 Aug; 103():58-63. PubMed ID: 24886837 [TBL] [Abstract][Full Text] [Related]
5. Functional characterization of CgCTR2, a putative vacuole copper transporter that is involved in germination and pathogenicity in Colletotrichum gloeosporioides. Barhoom S; Kupiec M; Zhao X; Xu JR; Sharon A Eukaryot Cell; 2008 Jul; 7(7):1098-108. PubMed ID: 18456860 [TBL] [Abstract][Full Text] [Related]
6. [Comparison of different transformation methods for Monascus sp]. Zhou LH; Wang ZX; Zhuge J Yi Chuan; 2006 Apr; 28(4):479-85. PubMed ID: 16606603 [TBL] [Abstract][Full Text] [Related]
7. cAMP regulation of "pathogenic" and "saprophytic" fungal spore germination. Barhoom S; Sharon A Fungal Genet Biol; 2004 Mar; 41(3):317-26. PubMed ID: 14761792 [TBL] [Abstract][Full Text] [Related]
8. Cloning of insertion site flanking sequence and construction of transfer DNA insert mutant library in Stylosanthes colletotrichum. Chen H; Hu C; Yi K; Huang G; Gao J; Zhang S; Zheng J; Liu Q; Xi J PLoS One; 2014; 9(10):e111172. PubMed ID: 25361073 [TBL] [Abstract][Full Text] [Related]
9. Identification of Conidiogenesis-Associated Genes in Colletotrichum gloeosporioides by Agrobacterium tumefaciens-Mediated Transformation. Wu J; Ji Z; Wang N; Chi F; Xu C; Zhou Z; Zhang J Curr Microbiol; 2016 Dec; 73(6):802-810. PubMed ID: 27582094 [TBL] [Abstract][Full Text] [Related]
10. Electroporation of germinated conidia and young mycelium as an efficient transformation system for Acremonium chrysogenum. Cruz-Ramón J; Fernández FJ; Mejía A; Fierro F Folia Microbiol (Praha); 2019 Jan; 64(1):33-39. PubMed ID: 29938299 [TBL] [Abstract][Full Text] [Related]
11. A mitogen-activated protein kinase kinase required for induction of cytokinesis and appressorium formation by host signals in the conidia of Colletotrichum gloeosporioides. Kim YK; Kawano T; Li D; Kolattukudy PE Plant Cell; 2000 Aug; 12(8):1331-43. PubMed ID: 10948253 [TBL] [Abstract][Full Text] [Related]
12. Isolation, characterization, and expression of a second beta-tubulin-encoding gene from Colletotrichum gloeosporioides f. sp. aeschynomene. Buhr TL; Dickman MB Appl Environ Microbiol; 1994 Nov; 60(11):4155-9. PubMed ID: 7993097 [TBL] [Abstract][Full Text] [Related]
13. CgDN3: an essential pathogenicity gene of colletotrichum gloeosporioides necessary to avert a hypersensitive-like response in the host Stylosanthes guianensis. Stephenson SA; Hatfield J; Rusu AG; Maclean DJ; Manners JM Mol Plant Microbe Interact; 2000 Sep; 13(9):929-41. PubMed ID: 10975650 [TBL] [Abstract][Full Text] [Related]
14. Development of transformation system for Trichophyton rubrum by electroporation of germinated conidia. Dobrowolska A; Staczek P Curr Genet; 2009 Oct; 55(5):537-42. PubMed ID: 19629488 [TBL] [Abstract][Full Text] [Related]
15. Mutation of AREA affects growth, sporulation, nitrogen regulation, and pathogenicity in Colletotrichum gloeosporioides. Bi F; Ment D; Luria N; Meng X; Prusky D Fungal Genet Biol; 2017 Feb; 99():29-39. PubMed ID: 28027951 [TBL] [Abstract][Full Text] [Related]
16. CgOpt1, a putative oligopeptide transporter from Colletotrichum gloeosporioides that is involved in responses to auxin and pathogenicity. Chagué V; Maor R; Sharon A BMC Microbiol; 2009 Aug; 9():173. PubMed ID: 19698103 [TBL] [Abstract][Full Text] [Related]
17. Engineering a genetic transformation system for Colletotrichum acutatum, the causal fungus of lime anthracnose and postbloom fruit drop of citrus. Chung KR; Shilts T; Li W; Timmer LW FEMS Microbiol Lett; 2002 Jul; 213(1):33-9. PubMed ID: 12127485 [TBL] [Abstract][Full Text] [Related]
18. Genetic transformation of germinated conidia of the thermophilic fungus Humicola grisea var. thermoidea to hygromycin B resistance. Dantas-Barbosa C; Araújo EF; Moraes LM; Vainstein MH; Azevedo MO FEMS Microbiol Lett; 1998 Dec; 169(1):185-90. PubMed ID: 9851051 [TBL] [Abstract][Full Text] [Related]
19. ABC protein CgABCF2 is required for asexual and sexual development, appressorial formation and plant infection in Colletotrichum gloeosporioides. Zhou Z; Wu J; Wang M; Zhang J Microb Pathog; 2017 Sep; 110():85-92. PubMed ID: 28645773 [TBL] [Abstract][Full Text] [Related]
20. Development of host strains and vector system for an efficient genetic transformation of filamentous fungi. Balabanova LA; Shkryl YN; Slepchenko LV; Yugay YA; Gorpenchenko TY; Kirichuk NN; Khudyakova YV; Bakunina IY; Podvolotskaya AB; Bulgakov VP; Seitkalieva AV; Son OM; Tekutyeva LA Plasmid; 2019 Jan; 101():1-9. PubMed ID: 30465791 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]