These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 10448160)

  • 1. Temporal response properties of neurons in the auditory pathway.
    Carney LH
    Curr Opin Neurobiol; 1999 Aug; 9(4):442-6. PubMed ID: 10448160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Encoding of the temporal regularity of sound in the human brainstem.
    Griffiths TD; Uppenkamp S; Johnsrude I; Josephs O; Patterson RD
    Nat Neurosci; 2001 Jun; 4(6):633-7. PubMed ID: 11369945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissecting the circuitry of the auditory system.
    Pollak GD; Burger RM; Klug A
    Trends Neurosci; 2003 Jan; 26(1):33-9. PubMed ID: 12495861
    [No Abstract]   [Full Text] [Related]  

  • 4. A biophysical modelling platform of the cochlear nucleus and other auditory circuits: From channels to networks.
    Manis PB; Campagnola L
    Hear Res; 2018 Mar; 360():76-91. PubMed ID: 29331233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The acoustic evoked brainstem potential of the cat. An experimental study.
    Csécsei GI; Klug N
    Acta Biol Hung; 1996; 47(1-4):21-40. PubMed ID: 9123993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inferior colliculus responses to multichannel microstimulation of the ventral cochlear nucleus: implications for auditory brain stem implants.
    Shivdasani MN; Mauger SJ; Rathbone GD; Paolini AG
    J Neurophysiol; 2008 Jan; 99(1):1-13. PubMed ID: 17928560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional tonotopic organization of the C57 mouse cochlear nucleus.
    Luo F; Wang Q; Farid N; Liu X; Yan J
    Hear Res; 2009 Nov; 257(1-2):75-82. PubMed ID: 19695320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Processing of modulated sounds in the zebra finch auditory midbrain: responses to noise, frequency sweeps, and sinusoidal amplitude modulations.
    Woolley SM; Casseday JH
    J Neurophysiol; 2005 Aug; 94(2):1143-57. PubMed ID: 15817647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural synchrony in ventral cochlear nucleus neuron populations is not mediated by intrinsic processes but is stimulus induced: implications for auditory brainstem implants.
    Shivdasani MN; Mauger SJ; Rathbone GD; Paolini AG
    J Neural Eng; 2009 Dec; 6(6):065003. PubMed ID: 19850978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A biophysical model for modulation frequency encoding in the cochlear nucleus.
    Eguia MC; Garcia GC; Romano SA
    J Physiol Paris; 2010; 104(3-4):118-27. PubMed ID: 19944156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An in vivo investigation of inferior colliculus single neuron responses to cochlear nucleus pulse train stimulation.
    Mauger SJ; Shivdasani MN; Rathbone GD; Paolini AG
    J Neurophysiol; 2012 Dec; 108(11):2999-3008. PubMed ID: 22972959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct comparison between properties of adaptation of the auditory nerve and the ventral cochlear nucleus in response to repetitive clicks.
    Meyer K; Rouiller EM; Loquet G
    Hear Res; 2007 Jun; 228(1-2):144-55. PubMed ID: 17391881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linear coding of complex sound spectra by discharge rate in neurons of the medial nucleus of the trapezoid body (MNTB) and its inputs.
    Koka K; Tollin DJ
    Front Neural Circuits; 2014; 8():144. PubMed ID: 25565971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Somatosensory influence on the cochlear nucleus and beyond.
    Shore SE; Zhou J
    Hear Res; 2006; 216-217():90-9. PubMed ID: 16513306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acute cochlear nucleus compression alters tuning properties of inferior colliculus neurons.
    Crea KN; Shivdasani MN; Argent RE; Mauger SJ; Rathbone GD; O'Leary SJ; Paolini AG
    Audiol Neurootol; 2010; 15(1):18-26. PubMed ID: 19451706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An exact method of regularity analysis for auditory brainstem neurons (L).
    Wright MC; Bleeck S; Winter IM
    J Acoust Soc Am; 2011 Dec; 130(6):3545-8. PubMed ID: 22225008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of Fos-like immunoreactivity in the auditory pathway evoked by bipolar electrical brainstem stimulation.
    Takagi H; Saito H; Nagase S; Suzuki M
    Acta Otolaryngol; 2004 Oct; 124(8):907-13. PubMed ID: 15513525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simulation of chopper neurons in the cochlear nucleus with wideband input from onset neurons.
    Bahmer A; Langner G
    Biol Cybern; 2009 Jan; 100(1):21-33. PubMed ID: 19015873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contralateral inhibitory and excitatory frequency response maps in the mammalian cochlear nucleus.
    Ingham NJ; Bleeck S; Winter IM
    Eur J Neurosci; 2006 Nov; 24(9):2515-29. PubMed ID: 17100840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane properties that shape the auditory code in three nuclei of the central nervous system.
    Schwarz DW; Tennigkeit F; Adam T; Finlayson P; Puil E
    J Otolaryngol; 1998 Dec; 27(6):311-7. PubMed ID: 9857314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.