BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 10448555)

  • 1. Arsenic in the food chains of a revegetated metalliferous mine tailings pond.
    Milton A; Johnson M
    Chemosphere; 1999 Aug; 39(5):765-79. PubMed ID: 10448555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lead within ecosystems on metalliferous mine tailings in Wales and Ireland.
    Milton A; Johnson MS; Cook JA
    Sci Total Environ; 2002 Nov; 299(1-3):177-90. PubMed ID: 12462584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concentrations of arsenic and heavy metals in vegetation at two abandoned mine tailings in South Korea.
    Chang P; Kim JY; Kim KW
    Environ Geochem Health; 2005 Apr; 27(2):109-19. PubMed ID: 16003579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetite recovery from copper tailings increases arsenic distribution in solution phase and uptake in native grass.
    Liu Y; Huang L
    J Environ Manage; 2017 Jan; 186(Pt 2):175-182. PubMed ID: 27210238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluvial transport and surface enrichment of arsenic in semi-arid mining regions: examples from the Mojave Desert, California.
    Kim CS; Stack DH; Rytuba JJ
    J Environ Monit; 2012 Jul; 14(7):1798-813. PubMed ID: 22718027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Food chain transfer of zinc within the ecosystems of old and modern metalliferous mine wastes.
    Milton A; Johnson MS
    Environ Technol; 2002 May; 23(5):525-36. PubMed ID: 12088376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Post-depositional behaviour of mercury and arsenic in submarine mine tailings deposited in Buyat Bay, North Sulawesi, Indonesia.
    Shepherd T; Rumengan I; Sahami A
    Mar Environ Res; 2018 Jun; 137():88-97. PubMed ID: 29530443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental change in a modified catchment downstream of a gold mine, Solomon Islands.
    Albert S; Kvennefors C; Jacob K; Kera J; Grinham A
    Environ Pollut; 2017 Dec; 231(Pt 1):942-953. PubMed ID: 28888940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation and risk assessment modeling of As and other heavy metals contamination around five abandoned metal mines in Korea.
    Kim JY; Kim KW; Ahn JS; Ko I; Lee CH
    Environ Geochem Health; 2005 Apr; 27(2):193-203. PubMed ID: 16003587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impacts and pathways of mine contaminants to bull trout (Salvelinus confluentus) in an Idaho watershed.
    Kiser T; Hansen J; Kennedy B
    Arch Environ Contam Toxicol; 2010 Aug; 59(2):301-11. PubMed ID: 20101401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contaminants in surface water and sediments near the Tynagh silver mine site, County Galway, Ireland.
    O'Neill A; Phillips DH; Bowen J; Sen Gupta B
    Sci Total Environ; 2015 Apr; 512-513():261-272. PubMed ID: 25634731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic transformations and biomarkers in meadow voles (Microtus pennsylvanicus) living on an abandoned gold mine site in Montague, Nova Scotia, Canada.
    Saunders JR; Knopper LD; Koch I; Reimer KJ
    Sci Total Environ; 2010 Jan; 408(4):829-35. PubMed ID: 19945142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arsenic hazards to humans, plants, and animals from gold mining.
    Eisler R
    Rev Environ Contam Toxicol; 2004; 180():133-65. PubMed ID: 14561078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trophic transfer of arsenic and antimony in a freshwater ecosystem: a field study.
    Culioli JL; Fouquoire A; Calendini S; Mori C; Orsini A
    Aquat Toxicol; 2009 Oct; 94(4):286-93. PubMed ID: 19695721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental hazard assessment of a marine mine tailings deposit site and potential implications for deep-sea mining.
    Mestre NC; Rocha TL; Canals M; Cardoso C; Danovaro R; Dell'Anno A; Gambi C; Regoli F; Sanchez-Vidal A; Bebianno MJ
    Environ Pollut; 2017 Sep; 228():169-178. PubMed ID: 28531798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution of trace element pollutants in a contaminated grassland ecosystem established on metalliferous fluorspar tailings. 1: lead.
    Andrews SM; Johnson MS; Cooke JA
    Environ Pollut; 1989; 58(1):73-85. PubMed ID: 15092440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of metals for leaching experiments of mine tailings: evaluation of the potential environmental hazard in the Guanajuato mining district, Mexico.
    Morton-Bermea O; Carrillo-Chávez A; Hernández E; González-Partida E
    Bull Environ Contam Toxicol; 2004 Oct; 73(4):770-6. PubMed ID: 15389345
    [No Abstract]   [Full Text] [Related]  

  • 18. Distribution and mobility of arsenic in soils of a mining area (Western Spain).
    García-Sánchez A; Alonso-Rojo P; Santos-Francés F
    Sci Total Environ; 2010 Sep; 408(19):4194-201. PubMed ID: 20538319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution of trace element pollutants in a contaminated grassland ecosystem established on metalliferous fluorspar tailings. 2: Zinc.
    Andrews SM; Johnson MS; Cooke JA
    Environ Pollut; 1989; 59(3):241-52. PubMed ID: 15092405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological effects of gold mine tailings on the intertidal marine environment in Nova Scotia, Canada.
    Doe K; Mroz R; Tay KL; Burley J; Teh S; Chen S
    Mar Pollut Bull; 2017 Jan; 114(1):64-76. PubMed ID: 27697321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.