These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 10449316)
1. Improving operating performance of glucoamylase by mutagenesis. Ford C Curr Opin Biotechnol; 1999 Aug; 10(4):353-7. PubMed ID: 10449316 [TBL] [Abstract][Full Text] [Related]
2. Mutational modulation of substrate bond-type specificity and thermostability of glucoamylase from Aspergillus awamori by replacement with short homologue active site sequences and thiol/disulfide engineering. Fierobe HP; Stoffer BB; Frandsen TP; Svensson B Biochemistry; 1996 Jul; 35(26):8696-704. PubMed ID: 8679632 [TBL] [Abstract][Full Text] [Related]
3. [The effect of point amino acid substitutions in an internal alpha-helix on thermostability of Aspergillus awamori X100 glucoamylase]. Surzhik MA; Churkina SV; Shmidt AE; Shvetsov AV; Kozhina TN; Firsov DL; Firsov LM; Petukhov MG Prikl Biokhim Mikrobiol; 2010; 46(2):221-7. PubMed ID: 20391767 [TBL] [Abstract][Full Text] [Related]
4. Replacement and deletion mutations in the catalytic domain and belt region of Aspergillus awamori glucoamylase to enhance thermostability. Liu HL; Doleyres Y; Coutinho PM; Ford C; Reilly PJ Protein Eng; 2000 Sep; 13(9):655-9. PubMed ID: 11054460 [TBL] [Abstract][Full Text] [Related]
5. Expression of a fungal glucoamylase in transgenic rice seeds. Xu X; Huang J; Fang J; Lin C; Cheng J; Shen Z Protein Expr Purif; 2008 Oct; 61(2):113-6. PubMed ID: 18588984 [TBL] [Abstract][Full Text] [Related]
6. Identification and elimination by site-directed mutagenesis of thermolabile aspartyl bonds in Aspergillus awamori glucoamylase. Chen HM; Ford C; Reilly PJ Protein Eng; 1995 Jun; 8(6):575-82. PubMed ID: 8532682 [TBL] [Abstract][Full Text] [Related]
7. [Increase in glucoamylase productivity of Aspergillus awamori strain by combination of radiating mutagenesis and plasmid transformation methods]. Vinetskiĭ IuP; Rozhkova AM; Sereda AS; Tsurikova NV; Nurtaeva AK; Semenova MV; Zorov IN; Sinitsyn AP Prikl Biokhim Mikrobiol; 2010; 46(6):685-92. PubMed ID: 21261079 [TBL] [Abstract][Full Text] [Related]
8. Effect on thermostability and catalytic activity of introducing disulfide bonds into Aspergillus awamori glucoamylase. Li Y; Coutinho PM; Ford C Protein Eng; 1998 Aug; 11(8):661-7. PubMed ID: 9749918 [TBL] [Abstract][Full Text] [Related]
9. Thermostability improvement of Aspergillus awamori glucoamylase via directed evolution of its gene located on episomal expression vector in Pichia pastoris cells. Schmidt A; Shvetsov A; Soboleva E; Kil Y; Sergeev V; Surzhik M Protein Eng Des Sel; 2019 Dec; 32(6):251-259. PubMed ID: 31891399 [TBL] [Abstract][Full Text] [Related]
10. Influence of different substrates on the production of a mutant thermostable glucoamylase in submerged fermentation. Pavezzi FC; Carneiro AA; Bocchini-Martins DA; Alves-Prado HF; Ferreira H; Martins PM; Gomes E; da Silva R Appl Biochem Biotechnol; 2011 Jan; 163(1):14-24. PubMed ID: 20414741 [TBL] [Abstract][Full Text] [Related]
11. Restoration of catalytic activity beyond wild-type level in glucoamylase from Aspergillus awamori by oxidation of the Glu400-->Cys catalytic-base mutant to cysteinesulfinic acid. Fierobe HP; Mirgorodskaya E; McGuire KA; Roepstorff P; Svensson B; Clarke AJ Biochemistry; 1998 Mar; 37(11):3743-52. PubMed ID: 9521693 [TBL] [Abstract][Full Text] [Related]
12. Predicted unfolding order of the 13 alpha-helices in the catalytic domain of glucoamylase from Aspergillus awamori var. X100 by molecular dynamics simulations. Liu HL; Wang WC Biotechnol Prog; 2003; 19(5):1583-90. PubMed ID: 14524723 [TBL] [Abstract][Full Text] [Related]
13. [The effect of acid proteinases on the activity and stability of glucoamylase preparations]. Rakhimova NM; Khasanov KhT; Davranov KD Prikl Biokhim Mikrobiol; 2006; 42(2):204-8. PubMed ID: 16761575 [TBL] [Abstract][Full Text] [Related]
14. Mutations to alter Aspergillus awamori glucoamylase selectivity. I. Tyr48Phe49-->Trp, Tyr116-->Trp, Tyr175-->Phe, Arg241-->Lys, Ser411-->Ala and Ser411-->Gly. Fang TY; Coutinho PM; Reilly PJ; Ford C Protein Eng; 1998 Feb; 11(2):119-26. PubMed ID: 9605546 [TBL] [Abstract][Full Text] [Related]
15. [Carboxyl groups in the active center of glucoamylase from Aspergillus awamori]. Savel'ev AN; Firsov LM Biokhimiia; 1982 Oct; 47(10):1618-20. PubMed ID: 6816298 [TBL] [Abstract][Full Text] [Related]
16. Stabilization of Aspergillus awamori glucoamylase by proline substitution and combining stabilizing mutations. Allen MJ; Coutinho PM; Ford CF Protein Eng; 1998 Sep; 11(9):783-8. PubMed ID: 9796827 [TBL] [Abstract][Full Text] [Related]
17. Protein engineering to improve the thermostability of glucoamylase from Aspergillus awamori based on molecular dynamics simulations. Liu HL; Wang WC Protein Eng; 2003 Jan; 16(1):19-25. PubMed ID: 12646689 [TBL] [Abstract][Full Text] [Related]
18. Substitution of asparagine residues in Aspergillus awamori glucoamylase by site-directed mutagenesis to eliminate N-glycosylation and inactivation by deamidation. Chen HM; Ford C; Reilly PJ Biochem J; 1994 Jul; 301 ( Pt 1)(Pt 1):275-81. PubMed ID: 8037681 [TBL] [Abstract][Full Text] [Related]
19. Molecular dynamics simulations of the unfolding mechanism of the catalytic domain from Aspergillus awamori var. X100 glucoamylase. Liu HL; Wang WC; Hsu CM J Biomol Struct Dyn; 2003 Feb; 20(4):567-74. PubMed ID: 12529155 [TBL] [Abstract][Full Text] [Related]
20. Deletion analysis of the starch-binding domain of Aspergillus glucoamylase. Chen L; Coutinho PM; Nikolov Z; Ford C Protein Eng; 1995 Oct; 8(10):1049-55. PubMed ID: 8771186 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]