BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 10449377)

  • 41. First-second shell interactions in metal binding sites in proteins: a PDB survey and DFT/CDM calculations.
    Dudev T; Lin YL; Dudev M; Lim C
    J Am Chem Soc; 2003 Mar; 125(10):3168-80. PubMed ID: 12617685
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rational design of a calcium-binding protein.
    Yang W; Jones LM; Isley L; Ye Y; Lee HW; Wilkins A; Liu ZR; Hellinga HW; Malchow R; Ghazi M; Yang JJ
    J Am Chem Soc; 2003 May; 125(20):6165-71. PubMed ID: 12785848
    [TBL] [Abstract][Full Text] [Related]  

  • 43. SuperStar: improved knowledge-based interaction fields for protein binding sites.
    Verdonk ML; Cole JC; Watson P; Gillet V; Willett P
    J Mol Biol; 2001 Mar; 307(3):841-59. PubMed ID: 11273705
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ab initio prediction of the three-dimensional structure of a de novo designed protein: a double-blind case study.
    Klepeis JL; Wei Y; Hecht MH; Floudas CA
    Proteins; 2005 Feb; 58(3):560-70. PubMed ID: 15609306
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structural insights into protein-metal ion partnerships.
    Barondeau DP; Getzoff ED
    Curr Opin Struct Biol; 2004 Dec; 14(6):765-74. PubMed ID: 15582401
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The design of inhibitors for medicinally relevant metalloproteins.
    Jacobsen FE; Lewis JA; Cohen SM
    ChemMedChem; 2007 Feb; 2(2):152-71. PubMed ID: 17163561
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Engineered alkane-hydroxylating cytochrome P450(BM3) exhibiting nativelike catalytic properties.
    Fasan R; Chen MM; Crook NC; Arnold FH
    Angew Chem Int Ed Engl; 2007; 46(44):8414-8. PubMed ID: 17886313
    [No Abstract]   [Full Text] [Related]  

  • 48. Metals in proteins: correlation between the metal-ion type, coordination number and the amino-acid residues involved in the coordination.
    Dokmanić I; Sikić M; Tomić S
    Acta Crystallogr D Biol Crystallogr; 2008 Mar; 64(Pt 3):257-63. PubMed ID: 18323620
    [TBL] [Abstract][Full Text] [Related]  

  • 49. NMR structures of paramagnetic metalloproteins.
    Arnesano F; Banci L; Piccioli M
    Q Rev Biophys; 2005 May; 38(2):167-219. PubMed ID: 16674835
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Beta-hairpin peptidomimetics: design, structures and biological activities.
    Robinson JA
    Acc Chem Res; 2008 Oct; 41(10):1278-88. PubMed ID: 18412373
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modeling of metal interaction geometries for protein-ligand docking.
    Seebeck B; Reulecke I; Kämper A; Rarey M
    Proteins; 2008 May; 71(3):1237-54. PubMed ID: 18041759
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Helix packing motif common to the crystal structures of two undecapeptides containing dehydrophenylalanine residues: implications for the de novo design of helical bundle super secondary structural modules.
    Rudresh ; Gupta M; Ramakumar S; Chauhan VS
    Biopolymers; 2005; 80(5):617-27. PubMed ID: 16193455
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structural test of the parameterized-backbone method for protein design.
    Plecs JJ; Harbury PB; Kim PS; Alber T
    J Mol Biol; 2004 Sep; 342(1):289-97. PubMed ID: 15313624
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dissecting the general physicochemical properties of noncovalent interactions involving tyrosine side chain as a second-shell ligand in biomolecular metal-binding site mimetics: an experimental study combining fluorescence, 13C NMR spectroscopy and ESI mass spectrometry.
    Yang CM; Li X; Wei W; Li Y; Duan Z; Zheng J; Huang T
    Chemistry; 2007; 13(11):3120-30. PubMed ID: 17201001
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Supramolecular interactions between functional metal complexes and proteins.
    Davies CL; Dux EL; Duhme-Klair AK
    Dalton Trans; 2009 Dec; (46):10141-54. PubMed ID: 19921045
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Computational de novo design, and characterization of an A(2)B(2) diiron protein.
    Summa CM; Rosenblatt MM; Hong JK; Lear JD; DeGrado WF
    J Mol Biol; 2002 Aug; 321(5):923-38. PubMed ID: 12206771
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Metalloprotein and metallo-DNA/RNAzyme design: current approaches, success measures, and future challenges.
    Lu Y
    Inorg Chem; 2006 Dec; 45(25):9930-40. PubMed ID: 17140190
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A diiron protein autogenerates a valine-phenylalanine cross-link.
    Cooley RB; Rhoads TW; Arp DJ; Karplus PA
    Science; 2011 May; 332(6032):929. PubMed ID: 21596985
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Metal binding affinity and selectivity in metalloproteins: insights from computational studies.
    Dudev T; Lim C
    Annu Rev Biophys; 2008; 37():97-116. PubMed ID: 18573074
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Engineering and design in the bioelectrochemistry of metalloproteins.
    Gilardi G; Fantuzzi A; Sadeghi SJ
    Curr Opin Struct Biol; 2001 Aug; 11(4):491-9. PubMed ID: 11495744
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.