BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 10449634)

  • 1. Role of fibronectin during biological apatite crystal nucleation: ultrastructural characterization.
    Daculsi G; Pilet P; Cottrel M; Guicheux G
    J Biomed Mater Res; 1999 Nov; 47(2):228-33. PubMed ID: 10449634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Apatite precipitation after incubation of biphasic calcium-phosphate ceramic in various solutions: influence of seed species and proteins.
    Rohanizadeh R; Padrines M; Bouler JM; Couchourel D; Fortun Y; Daculsi G
    J Biomed Mater Res; 1998 Dec; 42(4):530-9. PubMed ID: 9827676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of apatite crystal growth on Bioglass by recombinant amelogenin.
    Wen HB; Moradian-Oldak J; Fincham AG
    Biomaterials; 1999 Sep; 20(18):1717-25. PubMed ID: 10503973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fibronectin Adsorption on Hydroxyapatite Nanosensors and the Effect of Fibronectin Preadsorption on Biological Apatite Growth.
    He Z; He L; Deng C
    J Biomed Nanotechnol; 2018 Apr; 14(4):736-746. PubMed ID: 31352947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of apatite formation by vitronectin.
    Padrines M; Rohanizadeh R; Damiens C; Heymann D; Fortun Y
    Connect Tissue Res; 2000; 41(2):101-8. PubMed ID: 10992156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High resolution electron microscopy of nonstoichiometric apatite crystals.
    Nelson DG; Barry JC
    Anat Rec; 1989 Jun; 224(2):265-76. PubMed ID: 2672890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrastructural and electron diffraction of the bone-ceramic interfacial zone in coral and biphasic CaP implants.
    Richard M; Aguado E; Cottrel M; Daculsi G
    Calcif Tissue Int; 1998 May; 62(5):437-42. PubMed ID: 9541521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of fibronectin on hydroxyapatite formation.
    Couchourel D; Escoffier C; Rohanizadeh R; Bohic S; Daculsi G; Fortun Y; Padrines M
    J Inorg Biochem; 1999 Mar; 73(3):129-36. PubMed ID: 10331242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal dissolution of biological and ceramic apatites.
    Daculsi G; LeGeros RZ; Mitre D
    Calcif Tissue Int; 1989 Aug; 45(2):95-103. PubMed ID: 2505900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Particle-Attachment-Mediated and Matrix/Lattice-Guided Enamel Apatite Crystal Growth.
    Jokisaari JR; Wang C; Qiao Q; Hu X; Reed DA; Bleher R; Luan X; Klie RF; Diekwisch TGH
    ACS Nano; 2019 Mar; 13(3):3151-3161. PubMed ID: 30763075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Refinement of collagen-mineral interaction: a possible role for osteocalcin in apatite crystal nucleation, growth and development.
    Chen L; Jacquet R; Lowder E; Landis WJ
    Bone; 2015 Feb; 71():7-16. PubMed ID: 25284158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Apatite formation on three kinds of bioactive material at an early stage in vivo: a comparative study by transmission electron microscopy.
    Neo M; Nakamura T; Ohtsuki C; Kokubo T; Yamamuro T
    J Biomed Mater Res; 1993 Aug; 27(8):999-1006. PubMed ID: 8408128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrastructure, morphology and crystal growth of biogenic and synthetic apatites.
    Heywood BR; Sparks NH; Shellis RP; Weiner S; Mann S
    Connect Tissue Res; 1990; 25(2):103-19. PubMed ID: 2175692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissolution of poorly crystalline apatite crystals by osteoclasts determined on artificial thin-film apatite.
    Kim HM; Kim YS; Woo KM; Park SJ; Rey C; Kim Y; Kim JK; Ko JS
    J Biomed Mater Res; 2001 Aug; 56(2):250-6. PubMed ID: 11340596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Petal-like apatite formed on the surface of tricalcium phosphate ceramic after soaking in distilled water.
    Lin FH; Liao CJ; Chen KS; Su JS; Lin CP
    Biomaterials; 2001 Nov; 22(22):2981-92. PubMed ID: 11575472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomimetic apatite formation on calcium phosphate-coated titanium in Dulbecco's phosphate-buffered saline solution containing CaCl(2) with and without fibronectin.
    Chen C; Lee IS; Zhang SM; Yang HC
    Acta Biomater; 2010 Jun; 6(6):2274-81. PubMed ID: 19962459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BMP-2 and ALP gene expression induced by a BMP-2 gene-fibronectin-apatite composite layer.
    Wang X; Oyane A; Tsurushima H; Sogo Y; Li X; Ito A
    Biomed Mater; 2011 Aug; 6(4):045004. PubMed ID: 21636885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interface reactions between machinable bioactive glass-ceramics and bone.
    Höland W; Vogel W; Naumann K; Gummel J
    J Biomed Mater Res; 1985 Mar; 19(3):303-12. PubMed ID: 4077884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transmission electron microscopic study of interface between bioactive bone cement and bone: comparison of apatite and wollastonite containing glass-ceramic filler with hydroxyapatite and beta-tricalcium phosphate fillers.
    Okada Y; Kobayashi M; Fujita H; Katsura Y; Matsuoka H; Takadama H; Kokubo T; Nakamura T
    J Biomed Mater Res; 1999 Jun; 45(4):277-84. PubMed ID: 10321699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amelogenin control over apatite crystal growth is affected by the pH and degree of ionic saturation.
    Habelitz S; Denbesten PK; Marshall SJ; Marshall GW; Li W
    Orthod Craniofac Res; 2005 Nov; 8(4):232-8. PubMed ID: 16238603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.