These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 10449796)

  • 1. Cytoplasmic amino and carboxyl domains form a wide intracellular vestibule in an inwardly rectifying potassium channel.
    Lu T; Zhu YG; Yang J
    Proc Natl Acad Sci U S A; 1999 Aug; 96(17):9926-31. PubMed ID: 10449796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inward rectifier potassium channel Kir 2.3 is inhibited by internal sulfhydryl modification.
    Radeke CM; Conti LR; Vandenberg CA
    Neuroreport; 1999 Nov; 10(16):3277-82. PubMed ID: 10599834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytoplasmic vestibule of the weak inward rectifier Kir6.2 potassium channel.
    Cui Y; Wang W; Fan Z
    J Biol Chem; 2002 Mar; 277(12):10523-30. PubMed ID: 11790775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Architecture of a K+ channel inner pore revealed by stoichiometric covalent modification.
    Lu T; Nguyen B; Zhang X; Yang J
    Neuron; 1999 Mar; 22(3):571-80. PubMed ID: 10197536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two critical cysteine residues implicated in disulfide bond formation and proper folding of Kir2.1.
    Cho HC; Tsushima RG; Nguyen TT; Guy HR; Backx PH
    Biochemistry; 2000 Apr; 39(16):4649-57. PubMed ID: 10769120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexibility of the Kir6.2 inward rectifier K(+) channel pore.
    Loussouarn G; Phillips LR; Masia R; Rose T; Nichols CG
    Proc Natl Acad Sci U S A; 2001 Mar; 98(7):4227-32. PubMed ID: 11274446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Channel-lining residues of the AMPA receptor M2 segment: structural environment of the Q/R site and identification of the selectivity filter.
    Kuner T; Beck C; Sakmann B; Seeburg PH
    J Neurosci; 2001 Jun; 21(12):4162-72. PubMed ID: 11404401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural determinants of the closed KCa3.1 channel pore in relation to channel gating: results from a substituted cysteine accessibility analysis.
    Klein H; Garneau L; Banderali U; Simoes M; Parent L; Sauvé R
    J Gen Physiol; 2007 Apr; 129(4):299-315. PubMed ID: 17353352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Side-chain accessibilities in the pore of a K+ channel probed by sulfhydryl-specific reagents after cysteine-scanning mutagenesis.
    Kürz LL; Zühlke RD; Zhang HJ; Joho RH
    Biophys J; 1995 Mar; 68(3):900-5. PubMed ID: 7756555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localization of the pH gate in Kir1.1 channels.
    Zhang YY; Sackin H; Palmer LG
    Biophys J; 2006 Oct; 91(8):2901-9. PubMed ID: 16891366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the use of thiol-modifying agents to determine channel topology.
    Holmgren M; Liu Y; Xu Y; Yellen G
    Neuropharmacology; 1996; 35(7):797-804. PubMed ID: 8938712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing pore topology and conformational changes of Kir2.1 potassium channels by cysteine scanning mutagenesis.
    Kubo Y; Yoshimichi M; Heinemann SH
    FEBS Lett; 1998 Sep; 435(1):69-73. PubMed ID: 9755861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Topology of the P segments in the sodium channel pore revealed by cysteine mutagenesis.
    Yamagishi T; Janecki M; Marban E; Tomaselli GF
    Biophys J; 1997 Jul; 73(1):195-204. PubMed ID: 9199784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cysteine-scanning mutagenesis and thiol modification of the Rickettsia prowazekii ATP/ADP translocase: evidence that transmembrane regions I and II, but not III, are structural components of the aqueous translocation channel.
    Alexeyev MF; Roberts RA; Daugherty RM; Audia JP; Winkler HH
    Biochemistry; 2004 Jun; 43(22):6995-7002. PubMed ID: 15170337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of spermine on the accessibility of residues in the M2 segment of Kir2.1 channels expressed in Xenopus oocytes.
    Chang HK; Yeh SH; Shieh RC
    J Physiol; 2003 Nov; 553(Pt 1):101-12. PubMed ID: 12963788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional architecture of the inner pore of a voltage-gated Ca2+ channel.
    Zhen XG; Xie C; Fitzmaurice A; Schoonover CE; Orenstein ET; Yang J
    J Gen Physiol; 2005 Sep; 126(3):193-204. PubMed ID: 16129770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of the NMDA receptor channel M2 segment inferred from the accessibility of substituted cysteines.
    Kuner T; Wollmuth LP; Karlin A; Seeburg PH; Sakmann B
    Neuron; 1996 Aug; 17(2):343-52. PubMed ID: 8780657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional roles of charged amino acid residues on the wall of the cytoplasmic pore of Kir2.1.
    Fujiwara Y; Kubo Y
    J Gen Physiol; 2006 Apr; 127(4):401-19. PubMed ID: 16533896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localization of PIP2 activation gate in inward rectifier K+ channels.
    Xiao J; Zhen XG; Yang J
    Nat Neurosci; 2003 Aug; 6(8):811-8. PubMed ID: 12858177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of residues contributing to the ATP binding site of Kir6.2.
    Trapp S; Haider S; Jones P; Sansom MS; Ashcroft FM
    EMBO J; 2003 Jun; 22(12):2903-12. PubMed ID: 12805206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.