BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

491 related articles for article (PubMed ID: 10450091)

  • 21. In bacterial reaction centers, a key residue suppresses mutational blockage of two different proton transfer steps.
    Miksovska J; Valerio-Lepiniec M; Schiffer M; Hanson DK; Sebban P
    Biochemistry; 1998 Feb; 37(8):2077-83. PubMed ID: 9518006
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanism of proton transfer inhibition by Cd(2+) binding to bacterial reaction centers: determination of the pK(A) of functionally important histidine residues.
    Paddock ML; Sagle L; Tehrani A; Beatty JT; Feher G; Okamura MY
    Biochemistry; 2003 Aug; 42(32):9626-32. PubMed ID: 12911304
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Continuum electrostatic model for the binding of cytochrome c2 to the photosynthetic reaction center from Rhodobacter sphaeroides.
    Miyashita O; Onuchic JN; Okamura MY
    Biochemistry; 2003 Oct; 42(40):11651-60. PubMed ID: 14529275
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Examining methods for calculations of binding free energies: LRA, LIE, PDLD-LRA, and PDLD/S-LRA calculations of ligands binding to an HIV protease.
    Sham YY; Chu ZT; Tao H; Warshel A
    Proteins; 2000 Jun; 39(4):393-407. PubMed ID: 10813821
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrostatic study of the proton pumping mechanism in bovine heart cytochrome C oxidase.
    Popović DM; Stuchebrukhov AA
    J Am Chem Soc; 2004 Feb; 126(6):1858-71. PubMed ID: 14871119
    [TBL] [Abstract][Full Text] [Related]  

  • 26. P+HA- charge recombination reaction rate constant in Rhodobacter sphaeroides reaction centers is independent of the P/P+ midpoint potential.
    Tang CK; Williams JC; Taguchi AK; Allen JP; Woodbury NW
    Biochemistry; 1999 Jul; 38(27):8794-9. PubMed ID: 10393555
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Low-temperature studies of electron transfer to the M side of YFH reaction centers from Rhodobacter capsulatus.
    Kirmaier C; Holten D
    J Phys Chem B; 2009 Jan; 113(4):1132-42. PubMed ID: 19132840
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The unusually strong hydrogen bond between the carbonyl of Q(A) and His M219 in the Rhodobacter sphaeroides reaction center is not essential for efficient electron transfer from Q(A)(-) to Q(B).
    Breton J; Lavergne J; Wakeham MC; Nabedryk E; Jones MR
    Biochemistry; 2007 Jun; 46(22):6468-76. PubMed ID: 17497939
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interactions between cytochrome c2 and photosynthetic reaction center from Rhodobacter sphaeroides: changes in binding affinity and electron transfer rate due to mutation of interfacial hydrophobic residues are strongly correlated.
    Gong XM; Paddock ML; Okamura MY
    Biochemistry; 2003 Dec; 42(49):14492-500. PubMed ID: 14661961
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protein dynamics control the kinetics of initial electron transfer in photosynthesis.
    Wang H; Lin S; Allen JP; Williams JC; Blankert S; Laser C; Woodbury NW
    Science; 2007 May; 316(5825):747-50. PubMed ID: 17478721
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Water Activity Regulates the Q(A)(-) to Q(B) electron transfer in photosynthetic reaction centers from Rhodobacter sphaeroides.
    Palazzo G; Francia F; Mallardi A; Giustini M; Lopez F; Venturoli G
    J Am Chem Soc; 2008 Jul; 130(29):9353-63. PubMed ID: 18576650
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Realistic simulations of proton transport along the gramicidin channel: demonstrating the importance of solvation effects.
    Braun-Sand S; Burykin A; Chu ZT; Warshel A
    J Phys Chem B; 2005 Jan; 109(1):583-92. PubMed ID: 16851050
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of the membrane potential on the protonation of bacteriorhodopsin: insights from electrostatic calculations into the regulation of proton pumping.
    Bombarda E; Becker T; Ullmann GM
    J Am Chem Soc; 2006 Sep; 128(37):12129-39. PubMed ID: 16967962
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proton release due to manganese binding and oxidation in modified bacterial reaction centers.
    Kálmán L; Thielges MC; Williams JC; Allen JP
    Biochemistry; 2005 Oct; 44(40):13266-73. PubMed ID: 16201752
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of protein relaxation on charge-charge interactions and dielectric constants of proteins.
    Sham YY; Muegge I; Warshel A
    Biophys J; 1998 Apr; 74(4):1744-53. PubMed ID: 9545037
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electron transfer pathways and protein response to charge separation in photosynthetic reaction centers: time-resolved high-field ENDOR of the spin-correlated radical pair P865(+)QA(-).
    Poluektov OG; Utschig LM; Dubinskij AA; Thurnauer MC
    J Am Chem Soc; 2005 Mar; 127(11):4049-59. PubMed ID: 15771542
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Trapped water molecule in the charge separation of a bacterial reaction center.
    Ivashin N; Larsson S
    J Phys Chem B; 2008 Sep; 112(38):12124-33. PubMed ID: 18761433
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Slowing of proton transport processes in the structure of bacterial reaction centers and bacteriorhodopsin in the presence of dipyridamole.
    Knox PP; Lukashev EP; Mamedov MD; Semenov AY; Seifullina NH; Zakharova NI
    Biochemistry (Mosc); 2000 Feb; 65(2):213-7. PubMed ID: 10713550
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of protein dynamics in guiding electron-transfer pathways in reaction centers from Rhodobacter sphaeroides.
    Wang H; Hao Y; Jiang Y; Lin S; Woodbury NW
    J Phys Chem B; 2012 Jan; 116(1):711-7. PubMed ID: 22148392
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Proton pumping mechanism in cytochrome c oxidase.
    Siegbahn PE; Blomberg MR
    J Phys Chem A; 2008 Dec; 112(50):12772-80. PubMed ID: 18774786
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.