BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 10450746)

  • 1. Effects of TGF-beta on the immune system: implications for cancer immunotherapy.
    de Visser KE; Kast WM
    Leukemia; 1999 Aug; 13(8):1188-99. PubMed ID: 10450746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The failure of current immunotherapy for malignant glioma. Tumor-derived TGF-beta, T-cell apoptosis, and the immune privilege of the brain.
    Weller M; Fontana A
    Brain Res Brain Res Rev; 1995 Sep; 21(2):128-51. PubMed ID: 8866671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversal of tumor-induced immunosuppression: a new approach to cancer therapy.
    Wojtowicz-Praga S
    J Immunother; 1997 May; 20(3):165-77. PubMed ID: 9181454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Naïve CD8(+) T cell derived tumor-specific cytotoxic effectors as a potential remedy for overcoming TGF-β immunosuppression in the tumor microenvironment.
    Nguyen HH; Kim T; Song SY; Park S; Cho HH; Jung SH; Ahn JS; Kim HJ; Lee JJ; Kim HO; Cho JH; Yang DH
    Sci Rep; 2016 Jun; 6():28208. PubMed ID: 27306834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peptide inhibitors of transforming growth factor-beta enhance the efficacy of antitumor immunotherapy.
    Llopiz D; Dotor J; Casares N; Bezunartea J; Díaz-Valdés N; Ruiz M; Aranda F; Berraondo P; Prieto J; Lasarte JJ; Borrás-Cuesta F; Sarobe P
    Int J Cancer; 2009 Dec; 125(11):2614-23. PubMed ID: 19530254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tumor-derived TGF-beta reduces the efficacy of dendritic cell/tumor fusion vaccine.
    Kao JY; Gong Y; Chen CM; Zheng QD; Chen JJ
    J Immunol; 2003 Apr; 170(7):3806-11. PubMed ID: 12646647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TGF-beta-based immunotherapy for cancer: breaching the tumor firewall.
    Shah AH; Lee C
    Prostate; 2000 Oct; 45(2):167-72. PubMed ID: 11027416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel immunotherapeutic modality with direct hemoperfusion targeting transforming growth factor-beta prolongs the survival of tumor-bearing rats.
    Yamamoto Y; Ueda Y; Itoh T; Iwamoto A; Yamagishi H; Shimagaki M; Teramoto K
    Oncol Rep; 2006 Dec; 16(6):1277-84. PubMed ID: 17089050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tumor-induced immunosuppression: a barrier to immunotherapy of large tumors by cytokine-secreting tumor vaccine.
    Hsieh CL; Chen DS; Hwang LH
    Hum Gene Ther; 2000 Mar; 11(5):681-92. PubMed ID: 10757348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blockade of TGF-β signaling: a potential target for cancer immunotherapy?
    Ungefroren H
    Expert Opin Ther Targets; 2019 Aug; 23(8):679-693. PubMed ID: 31232607
    [No Abstract]   [Full Text] [Related]  

  • 11. Reversal of tumor-induced immunosuppression by TGF-beta inhibitors.
    Wojtowicz-Praga S
    Invest New Drugs; 2003 Feb; 21(1):21-32. PubMed ID: 12795527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tumor-derived transforming growth factor-β is critical for tumor progression and evasion from immune surveillance.
    Li Z; Zhang LJ; Zhang HR; Tian GF; Tian J; Mao XL; Jia ZH; Meng ZY; Zhao LQ; Yin ZN; Wu ZZ
    Asian Pac J Cancer Prev; 2014; 15(13):5181-6. PubMed ID: 25040972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphoantigens overcome human TCRVgamma9+ gammadelta Cell immunosuppression by TGF-beta: relevance for cancer immunotherapy.
    Capietto AH; Martinet L; Cendron D; Fruchon S; Pont F; Fournié JJ
    J Immunol; 2010 Jun; 184(12):6680-7. PubMed ID: 20483742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transforming growth factor-beta production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence.
    Terabe M; Matsui S; Park JM; Mamura M; Noben-Trauth N; Donaldson DD; Chen W; Wahl SM; Ledbetter S; Pratt B; Letterio JJ; Paul WE; Berzofsky JA
    J Exp Med; 2003 Dec; 198(11):1741-52. PubMed ID: 14657224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blocking transforming growth factor-β signaling pathway augments antitumor effect of adoptive NK-92 cell therapy.
    Yang B; Liu H; Shi W; Wang Z; Sun S; Zhang G; Hu Y; Liu T; Jiao S
    Int Immunopharmacol; 2013 Oct; 17(2):198-204. PubMed ID: 23806302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene transfer for transplantation. Prolongation of allograft survival with transforming growth factor-beta 1.
    Qin L; Chavin KD; Ding Y; Woodward JE; Favaro JP; Lin J; Bromberg JS
    Ann Surg; 1994 Oct; 220(4):508-18; discussion 518-9. PubMed ID: 7944661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The soluble transforming growth factor-beta receptor: advantages and applications.
    Russo LM; Brown D; Lin HY
    Int J Biochem Cell Biol; 2009 Mar; 41(3):472-6. PubMed ID: 18339576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From TGF-beta to cancer therapy.
    Huang X; Lee C
    Curr Drug Targets; 2003 Apr; 4(3):243-50. PubMed ID: 12643474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reinforcement of cancer immunotherapy by adoptive transfer of cblb-deficient CD8+ T cells combined with a DC vaccine.
    Lutz-Nicoladoni C; Wallner S; Stoitzner P; Pircher M; Gruber T; Wolf AM; Gastl G; Penninger JM; Baier G; Wolf D
    Immunol Cell Biol; 2012 Jan; 90(1):130-4. PubMed ID: 21383769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunosuppression mediated by tumor cells: a challenge for immunotherapeutic approaches.
    Paillard F
    Hum Gene Ther; 2000 Mar; 11(5):657-8. PubMed ID: 10757345
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.