BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 10450933)

  • 1. Carbomer inhibits tryptic proteolysis of luteinizing hormone-releasing hormone and N-alpha-benzoyl-L-arginine ethyl ester by binding the enzyme.
    Walker GF; Ledger R; Tucker IG
    Pharm Res; 1999 Jul; 16(7):1074-80. PubMed ID: 10450933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protective effect of Carbopol on enzymatic degradation of a peptide-like substrate. I: Effect of various concentrations and grades of Carbopol and other reaction variables on trypsin activity.
    Vaidya AP; Wigent RJ; Moore JC; Schwartz JB
    Pharm Dev Technol; 2007; 12(1):89-96. PubMed ID: 17484148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of the enzymatic activity and inhibition using HPFA with a microreactor, trypsin, absorbed on immobilized artificial membrane.
    Liu Y; Li L; Dai R; Qu F; Geng L; Li XM; Deng Y
    J Chromatogr Sci; 2010 Feb; 48(2):150-5. PubMed ID: 20109295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mucoadhesive polymers in peroral peptide drug delivery. II. Carbomer and polycarbophil are potent inhibitors of the intestinal proteolytic enzyme trypsin.
    Luessen HL; Verhoef JC; Borchard G; Lehr CM; de Boer AG; Junginger HE
    Pharm Res; 1995 Sep; 12(9):1293-8. PubMed ID: 8570524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic and structural properties of two isoforms of trypsin isolated from the viscera of Japanese anchovy, Engraulis japonicus.
    Ahsan MN; Watabe S
    J Protein Chem; 2001 Jan; 20(1):49-58. PubMed ID: 11330348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimisation of an in vitro procedure for the determination of the enzymatic inhibition potency of multifunctional polymers.
    Ameye D; Voorspoels J; Remon JP; Demeester J; De Smedt SC
    J Control Release; 2000 Sep; 68(3):413-7. PubMed ID: 10974395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced proteolytic activity of covalently bound enzymes in photopolymerized sol gel.
    Dulay MT; Baca QJ; Zare RN
    Anal Chem; 2005 Jul; 77(14):4604-10. PubMed ID: 16013879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trypsin from the viscera of Bogue (Boops boops): isolation and characterisation.
    Barkia A; Bougatef A; Nasri R; Fetoui E; Balti R; Nasri M
    Fish Physiol Biochem; 2010 Dec; 36(4):893-902. PubMed ID: 19898990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [A secreted trypsin-like proteinase from Yersinia pseudotuberculosis].
    Burtseva TI; Buzoleva LS; Somov GP
    Biokhimiia; 1995 Oct; 60(10):1589-95. PubMed ID: 8555358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzyme-based high-performance liquid chromatography supports as probes of enzyme activity and inhibition: the immobilization of trypsin and alpha-chymotrypsin on an immobilized artificial membrane high-performance liquid chromatography support.
    Chui WK; Wainer IW
    Anal Biochem; 1992 Mar; 201(2):237-45. PubMed ID: 1321567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of soybean trypsin inhibitor sensitive protease from unfertilized sea urchin eggs.
    Alliegro MC; Schuel H
    Biochemistry; 1985 Jul; 24(15):3926-31. PubMed ID: 3902077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactivity of trypsin in reverse micelles: pH-effects on the W0 versus enzyme activity profiles.
    Fadnavis NW; Babu RL; Deshpande A
    Biochimie; 1998 Dec; 80(12):1025-30. PubMed ID: 9924980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steady-state kinetics of trypsin-catalyzed hydrolysis of a synthetic substrate, dansyl-D-arginine methyl ester.
    Goto S
    J Biochem; 1980 Feb; 87(2):399-406. PubMed ID: 7358645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immobilization of trypsin on sub-micron skeletal polymer monolith.
    Yao C; Qi L; Hu W; Wang F; Yang G
    Anal Chim Acta; 2011 Apr; 692(1-2):131-7. PubMed ID: 21501722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxic effect of melanoidins from glucose-asparagine on trypsin activity.
    Ibarz A; Garvín A; Garza S; Pagán J
    Food Chem Toxicol; 2009 Aug; 47(8):2071-5. PubMed ID: 19481131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The kinetics of hydrolysis of some extended N-aminoacyl-l-lysine methyl esters.
    Green GD; Tomalin G
    Eur J Biochem; 1976 Sep; 68(1):131-7. PubMed ID: 986943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Presteady state kinetics of trypsin-catalyzed hydrolyses of dansyl-arginine derivatives.
    Goto S; Hess GP
    J Biochem; 1979 Sep; 86(3):619-25. PubMed ID: 41834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and kinetic characterisation of omega-guanidinocarbonic acid ethyl esters as trypsin substrates.
    Schuster M; Medvedkin VN; Schellenberger V; Mitin YuV ; Jakubke HD
    Biomed Biochim Acta; 1990; 49(6):519-21. PubMed ID: 2275728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of derivatives of guanidinophenylalanine and guanidinophenylglycine with Streptomyces griseus trypsin.
    Hatanaka Y; Tsunematsu H; Mizusaki K; Makisumi S
    Biochim Biophys Acta; 1985 Dec; 832(3):274-9. PubMed ID: 3935172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of p-nitrophenyl chloroformate chemistry to immobilize protein on orthopedic biomaterials.
    Mikulec LJ; Puleo DA
    J Biomed Mater Res; 1996 Oct; 32(2):203-8. PubMed ID: 8884496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.