These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
775 related articles for article (PubMed ID: 10451343)
1. [Physical arrangement of membrane lipids susceptible to being used in the process of cell sorting of proteins]. Wolf C; Quinn P; Koumanov K; Chachaty C; Tenchov B J Soc Biol; 1999; 193(2):117-23. PubMed ID: 10451343 [TBL] [Abstract][Full Text] [Related]
2. Is a fluid-mosaic model of biological membranes fully relevant? Studies on lipid organization in model and biological membranes. Wiśniewska A; Draus J; Subczynski WK Cell Mol Biol Lett; 2003; 8(1):147-59. PubMed ID: 12655369 [TBL] [Abstract][Full Text] [Related]
3. Structure of detergent-resistant membrane domains: does phase separation occur in biological membranes? Brown DA; London E Biochem Biophys Res Commun; 1997 Nov; 240(1):1-7. PubMed ID: 9367871 [TBL] [Abstract][Full Text] [Related]
4. Evidence for segregation of heterologous GPI-anchored proteins into separate lipid rafts within the plasma membrane. Wang J; Gunning W; Kelley KM; Ratnam M J Membr Biol; 2002 Sep; 189(1):35-43. PubMed ID: 12202950 [TBL] [Abstract][Full Text] [Related]
5. Sterol carrier protein-2 selectively alters lipid composition and cholesterol dynamics of caveolae/lipid raft vs nonraft domains in L-cell fibroblast plasma membranes. Atshaves BP; Gallegos AM; McIntosh AL; Kier AB; Schroeder F Biochemistry; 2003 Dec; 42(49):14583-98. PubMed ID: 14661971 [TBL] [Abstract][Full Text] [Related]
6. Lipid rafts as functional heterogeneity in cell membranes. Lingwood D; Kaiser HJ; Levental I; Simons K Biochem Soc Trans; 2009 Oct; 37(Pt 5):955-60. PubMed ID: 19754431 [TBL] [Abstract][Full Text] [Related]
7. [Plasma membrane--order or chaos?]. Dabrowska- G; Głowacka B Postepy Biochem; 2005; 51(4):414-20. PubMed ID: 16676576 [TBL] [Abstract][Full Text] [Related]
8. Sphingomyelin chain length influences the distribution of GPI-anchored proteins in rafts in supported lipid bilayers. Garner AE; Smith DA; Hooper NM Mol Membr Biol; 2007; 24(3):233-42. PubMed ID: 17520480 [TBL] [Abstract][Full Text] [Related]
9. On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes. Ahmed SN; Brown DA; London E Biochemistry; 1997 Sep; 36(36):10944-53. PubMed ID: 9283086 [TBL] [Abstract][Full Text] [Related]
10. A lipid matrix model of membrane raft structure. Quinn PJ Prog Lipid Res; 2010 Oct; 49(4):390-406. PubMed ID: 20478335 [TBL] [Abstract][Full Text] [Related]
11. Exposure of phosphatidylinositol transfer proteins to sphingomyelin-cholesterol membranes suggests transient but productive interactions with raft-like, liquid-ordered domains. Miller EC; Helmkamp GM Biochemistry; 2003 Nov; 42(45):13250-9. PubMed ID: 14609336 [TBL] [Abstract][Full Text] [Related]
12. A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Anderson RG; Jacobson K Science; 2002 Jun; 296(5574):1821-5. PubMed ID: 12052946 [TBL] [Abstract][Full Text] [Related]
13. Cholesterol sensitivity of detergent resistance: a rapid flow cytometric test for detecting constitutive or induced raft association of membrane proteins. Gombos I; Bacsó Z; Detre C; Nagy H; Goda K; Andrásfalvy M; Szabó G; Matkó J Cytometry A; 2004 Oct; 61(2):117-26. PubMed ID: 15382146 [TBL] [Abstract][Full Text] [Related]
14. Partitioning of dual-lipidated peptides into membrane microdomains: lipid sorting vs peptide aggregation. Janosch S; Nicolini C; Ludolph B; Peters C; Völkert M; Hazlet TL; Gratton E; Waldmann H; Winter R J Am Chem Soc; 2004 Jun; 126(24):7496-503. PubMed ID: 15198596 [TBL] [Abstract][Full Text] [Related]
15. Cholesterol interaction with proteins that partition into membrane domains: an overview. Epand RM; Thomas A; Brasseur R; Epand RF Subcell Biochem; 2010; 51():253-78. PubMed ID: 20213547 [TBL] [Abstract][Full Text] [Related]
16. Glycosphingolipids are not essential for formation of detergent-resistant membrane rafts in melanoma cells. methyl-beta-cyclodextrin does not affect cell surface transport of a GPI-anchored protein. Ostermeyer AG; Beckrich BT; Ivarson KA; Grove KE; Brown DA J Biol Chem; 1999 Nov; 274(48):34459-66. PubMed ID: 10567427 [TBL] [Abstract][Full Text] [Related]
17. Lipids, proteins, and their interplay in the dynamics of temperature-stressed membranes of a cyanobacterium, Synechocystis PCC 6803. Laczkó-Dobos H; Szalontai B Biochemistry; 2009 Oct; 48(42):10120-8. PubMed ID: 19788309 [TBL] [Abstract][Full Text] [Related]
18. Caveolar structure and protein sorting are maintained in NIH 3T3 cells independent of glycosphingolipid depletion. Shu L; Lee L; Chang Y; Holzman LB; Edwards CA; Shelden E; Shayman JA Arch Biochem Biophys; 2000 Jan; 373(1):83-90. PubMed ID: 10620326 [TBL] [Abstract][Full Text] [Related]
19. An X-ray diffraction study of model membrane raft structures. Quinn PJ; Wolf C FEBS J; 2010 Nov; 277(22):4685-98. PubMed ID: 20977668 [TBL] [Abstract][Full Text] [Related]
20. Seminal plasma proteins regulate the association of lipids and proteins within detergent-resistant membrane domains of bovine spermatozoa. Girouard J; Frenette G; Sullivan R Biol Reprod; 2008 May; 78(5):921-31. PubMed ID: 18235103 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]