These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
508 related articles for article (PubMed ID: 10451503)
1. Peptides, antibodies, and FRET on beads in flow cytometry: A model system using fluoresceinated and biotinylated beta-endorphin. Buranda T; Lopez GP; Keij J; Harris R; Sklar LA Cytometry; 1999 Sep; 37(1):21-31. PubMed ID: 10451503 [TBL] [Abstract][Full Text] [Related]
2. Detection of epitope-tagged proteins in flow cytometry: fluorescence resonance energy transfer-based assays on beads with femtomole resolution. Buranda T; Lopez GP; Simons P; Pastuszyn A; Sklar LA Anal Biochem; 2001 Nov; 298(2):151-62. PubMed ID: 11700971 [TBL] [Abstract][Full Text] [Related]
3. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm. He L; Bradrick TD; Karpova TS; Wu X; Fox MH; Fischer R; McNally JG; Knutson JR; Grammer AC; Lipsky PE Cytometry A; 2003 May; 53(1):39-54. PubMed ID: 12701131 [TBL] [Abstract][Full Text] [Related]
4. A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP-->YFP fluorescence resonance energy transfer (FRET). He L; Olson DP; Wu X; Karpova TS; McNally JG; Lipsky PE Cytometry A; 2003 Oct; 55(2):71-85. PubMed ID: 14505312 [TBL] [Abstract][Full Text] [Related]
5. Continuous cytometric bead processing within a microfluidic device for bead based sensing platforms. Yang S; Undar A; Zahn JD Lab Chip; 2007 May; 7(5):588-95. PubMed ID: 17476377 [TBL] [Abstract][Full Text] [Related]
6. Development of homogeneous binding assays based on fluorescence resonance energy transfer between quantum dots and Alexa Fluor fluorophores. Nikiforov TT; Beechem JM Anal Biochem; 2006 Oct; 357(1):68-76. PubMed ID: 16860286 [TBL] [Abstract][Full Text] [Related]
7. Biotin induced fluorescence enhancement in resonance energy transfer and application for bioassay. Hu S; Yang H; Cai R; Liu Z; Yang X Talanta; 2009 Dec; 80(2):454-8. PubMed ID: 19836503 [TBL] [Abstract][Full Text] [Related]
8. Detection of multivalent interactions through two-tiered energy transfer. Song X; Shi J; Nolan J; Swanson B Anal Biochem; 2001 Apr; 291(1):133-41. PubMed ID: 11262166 [TBL] [Abstract][Full Text] [Related]
9. Rapid multiplexed flow cytometric assay for botulinum neurotoxin detection using an automated fluidic microbead-trapping flow cell for enhanced sensitivity. Ozanich RM; Bruckner-Lea CJ; Warner MG; Miller K; Antolick KC; Marks JD; Lou J; Grate JW Anal Chem; 2009 Jul; 81(14):5783-93. PubMed ID: 19530657 [TBL] [Abstract][Full Text] [Related]
10. Homogeneous noncompetitive assay of protein via Förster-resonance-energy-transfer with tryptophan residue(s) as intrinsic donor(s) and fluorescent ligand as acceptor. Liao F; Xie Y; Yang X; Deng P; Chen Y; Xie G; Zhu S; Liu B; Yuan H; Liao J; Zhao Y; Yu M Biosens Bioelectron; 2009 Sep; 25(1):112-7. PubMed ID: 19586766 [TBL] [Abstract][Full Text] [Related]
11. A fluorescence resonance energy transfer sensor based on maltose binding protein. Medintz IL; Goldman ER; Lassman ME; Mauro JM Bioconjug Chem; 2003; 14(5):909-18. PubMed ID: 13129393 [TBL] [Abstract][Full Text] [Related]
12. Quantitative screening of yeast surface-displayed polypeptide libraries by magnetic bead capture. Yeung YA; Wittrup KD Biotechnol Prog; 2002; 18(2):212-20. PubMed ID: 11934287 [TBL] [Abstract][Full Text] [Related]
13. Multiplexed, particle-based detection of DNA using flow cytometry with 3DNA dendrimers for signal amplification. Lowe M; Spiro A; Zhang YZ; Getts R Cytometry A; 2004 Aug; 60(2):135-44. PubMed ID: 15290714 [TBL] [Abstract][Full Text] [Related]
14. Time-resolved fluorescence resonance energy transfer kinase assays using physiological protein substrates: applications of terbium-fluorescein and terbium-green fluorescent protein fluorescence resonance energy transfer pairs. Riddle SM; Vedvik KL; Hanson GT; Vogel KW Anal Biochem; 2006 Sep; 356(1):108-16. PubMed ID: 16797477 [TBL] [Abstract][Full Text] [Related]
15. [The biotin-thyroxin conjugate as a bifunctional ligand of binding proteins]. Novakovskiĭ ME; Vashkevich II; Sviridov OV Bioorg Khim; 2009; 35(2):178-91. PubMed ID: 19537169 [TBL] [Abstract][Full Text] [Related]
17. Ligand-receptor-G-protein molecular assemblies on beads for mechanistic studies and screening by flow cytometry. Simons PC; Shi M; Foutz T; Cimino DF; Lewis J; Buranda T; Lim WK; Neubig RR; McIntire WE; Garrison J; Prossnitz E; Sklar LA Mol Pharmacol; 2003 Nov; 64(5):1227-38. PubMed ID: 14573773 [TBL] [Abstract][Full Text] [Related]
18. Long wavelength fluorophores and cell-by-cell correction for autofluorescence significantly improves the accuracy of flow cytometric energy transfer measurements on a dual-laser benchtop flow cytometer. Sebestyén Z; Nagy P; Horváth G; Vámosi G; Debets R; Gratama JW; Alexander DR; Szöllosi J Cytometry; 2002 Jul; 48(3):124-35. PubMed ID: 12116358 [TBL] [Abstract][Full Text] [Related]
19. A fluorescence resonance energy transfer-based binding assay for characterizing kinase inhibitors: important role for C-terminal biotin tagging of the kinase. Kwan J; Ling A; Papp E; Shaw D; Bradshaw JM Anal Biochem; 2009 Dec; 395(2):256-62. PubMed ID: 19716360 [TBL] [Abstract][Full Text] [Related]
20. General strategy for biosensor design and construction employing multifunctional surface-tethered components. Medintz IL; Anderson GP; Lassman ME; Goldman ER; Bettencourt LA; Mauro JM Anal Chem; 2004 Oct; 76(19):5620-9. PubMed ID: 15456279 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]