These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 10451554)

  • 1. Ionization behavior of acidic residues in calbindin D(9k).
    Kesvatera T; Jönsson B; Thulin E; Linse S
    Proteins; 1999 Oct; 37(1):106-15. PubMed ID: 10451554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement and modelling of sequence-specific pKa values of lysine residues in calbindin D9k.
    Kesvatera T; Jönsson B; Thulin E; Linse S
    J Mol Biol; 1996 Jun; 259(4):828-39. PubMed ID: 8683586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pK(a) calculations of calbindin D(9k): effects of Ca(2+) binding, protein dielectric constant, and ionic strength.
    Juffer AH; Vogel HJ
    Proteins; 2000 Dec; 41(4):554-67. PubMed ID: 11056042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Focusing of the electrostatic potential at EF-hands of calbindin D(9k): titration of acidic residues.
    Kesvatera T; Jönsson B; Thulin E; Linse S
    Proteins; 2001 Nov; 45(2):129-35. PubMed ID: 11562942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissecting the electrostatic interactions and pH-dependent activity of a family 11 glycosidase.
    Joshi MD; Sidhu G; Nielsen JE; Brayer GD; Withers SG; McIntosh LP
    Biochemistry; 2001 Aug; 40(34):10115-39. PubMed ID: 11513590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-range nature of the interactions between titratable groups in Bacillus agaradhaerens family 11 xylanase: pH titration of B. agaradhaerens xylanase.
    Betz M; Löhr F; Wienk H; Rüterjans H
    Biochemistry; 2004 May; 43(19):5820-31. PubMed ID: 15134456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calbindin D(9k): a protein optimized for calcium binding at neutral pH.
    Kesvatera T; Jönsson B; Telling A; Tõugu V; Vija H; Thulin E; Linse S
    Biochemistry; 2001 Dec; 40(50):15334-40. PubMed ID: 11735416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring the early steps of unfolding of dicalcium and mono-Ce3+-substituted forms of P43M calbindin D9k.
    Jiménez B; Poggi L; Piccioli M
    Biochemistry; 2003 Nov; 42(44):13066-73. PubMed ID: 14596622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in structure and stability of calbindin-D(28K) upon calcium binding.
    Venyaminov SY; Klimtchuk ES; Bajzer Z; Craig TA
    Anal Biochem; 2004 Nov; 334(1):97-105. PubMed ID: 15464957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of opposite charges in protein electrospray ionization mass spectrometry.
    Samalikova M; Grandori R
    J Mass Spectrom; 2003 Sep; 38(9):941-7. PubMed ID: 14505321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational study of silk-like peptides containing the calcium-binding sequence from calbindin D9k using 13C CP/MAS NMR spectroscopy.
    Asakura T; Hamada M; Nakazawa Y; Ha SW; Knight DP
    Biomacromolecules; 2006 Feb; 7(2):627-34. PubMed ID: 16471940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulating proteins at constant pH: An approach combining molecular dynamics and Monte Carlo simulation.
    Bürgi R; Kollman PA; Van Gunsteren WF
    Proteins; 2002 Jun; 47(4):469-80. PubMed ID: 12001225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of calcium binding on the side-chain methyl dynamics of calbindin D9k: a 2H NMR relaxation study.
    Johnson E; Chazin WJ; Rance M
    J Mol Biol; 2006 Apr; 357(4):1237-52. PubMed ID: 16476440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interstrand loops CD and EF act as pH-dependent gates to regulate fatty acid ligand binding in tear lipocalin.
    Gasymov OK; Abduragimov AR; Yusifov TN; Glasgow BJ
    Biochemistry; 2004 Oct; 43(40):12894-904. PubMed ID: 15461462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of NMR data reveals that proteins' local structures are stabilized by electronic polarization.
    Tong Y; Ji CG; Mei Y; Zhang JZ
    J Am Chem Soc; 2009 Jun; 131(24):8636-41. PubMed ID: 19485377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrostatic contributions to residue-specific protonation equilibria and proton binding capacitance for a small protein.
    Lindman S; Linse S; Mulder FA; André I
    Biochemistry; 2006 Nov; 45(47):13993-4002. PubMed ID: 17115694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation studies of the protein-water interface. II. Properties at the mesoscopic resolution.
    Rudas T; Schröder C; Boresch S; Steinhauser O
    J Chem Phys; 2006 Jun; 124(23):234908. PubMed ID: 16821954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Empirical relationships between protein structure and carboxyl pKa values in proteins.
    Forsyth WR; Antosiewicz JM; Robertson AD
    Proteins; 2002 Aug; 48(2):388-403. PubMed ID: 12112705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Negatively charged residues and hydrogen bonds tune the ligand histidine pKa values of Rieske iron-sulfur proteins.
    Klingen AR; Ullmann GM
    Biochemistry; 2004 Oct; 43(39):12383-9. PubMed ID: 15449929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implications of a high dielectric constant in proteins.
    Lund M; Jönsson B; Woodward CE
    J Chem Phys; 2007 Jun; 126(22):225103. PubMed ID: 17581083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.