BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 10452216)

  • 1. Event-related potentials and saccadic reaction times: effects of fixation point offset or change.
    Spantekow A; Krappmann P; Everling S; Flohr H
    Exp Brain Res; 1999 Aug; 127(3):291-7. PubMed ID: 10452216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Saccadic reaction time in the monkey: advanced preparation of oculomotor programs is primarily responsible for express saccade occurrence.
    Paré M; Munoz DP
    J Neurophysiol; 1996 Dec; 76(6):3666-81. PubMed ID: 8985865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reaction times of vertical prosaccades and antisaccades in gap and overlap tasks.
    Goldring J; Fischer B
    Exp Brain Res; 1997 Jan; 113(1):88-103. PubMed ID: 9028778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of previous visual stimulus or saccade on saccadic reaction times in monkey.
    Dorris MC; Taylor TL; Klein RM; Munoz DP
    J Neurophysiol; 1999 May; 81(5):2429-36. PubMed ID: 10322078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of pre-cues on voluntary and reflexive saccade generation. I. Anti-cues for pro-saccades.
    Fischer B; Weber H
    Exp Brain Res; 1998 Jun; 120(4):403-16. PubMed ID: 9655226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human express saccade makers are impaired at suppressing visually evoked saccades.
    Biscaldi M; Fischer B; Stuhr V
    J Neurophysiol; 1996 Jul; 76(1):199-214. PubMed ID: 8836219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of pre-cues on voluntary and reflexive saccade generation. II. Pro-cues for anti-saccades.
    Weber H; Dürr N; Fischer B
    Exp Brain Res; 1998 Jun; 120(4):417-31. PubMed ID: 9655227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Express saccades in cat: effects of task and target modality.
    Baro JA; Hughes HC; Peck CK
    Exp Brain Res; 1995; 103(2):209-17. PubMed ID: 7789428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential effects of target probability on saccade latencies in gap and warning tasks.
    Dick S; Kathmann N; Ostendorf F; Ploner CJ
    Exp Brain Res; 2005 Aug; 164(4):458-63. PubMed ID: 15864566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of the primate prefrontal cortex to the gap effect.
    Tinsley CJ; Everling S
    Prog Brain Res; 2002; 140():61-72. PubMed ID: 12508582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Saccadic reaction times and activation of the prelunate cortex: parallel observations in trained rhesus monkeys.
    Boch R; Fischer B
    Exp Brain Res; 1983; 50(2-3):201-10. PubMed ID: 6641855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Task-dependent effects of social attention on saccadic reaction times.
    Koval MJ; Thomas BS; Everling S
    Exp Brain Res; 2005 Dec; 167(3):475-80. PubMed ID: 16283398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct sensory- and goal-related signals underlie the gap effect in the superior colliculus.
    Marino RA; Levy R; Munoz DP
    Eur J Neurosci; 2022 Jan; 55(1):205-226. PubMed ID: 34791728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gap duration and location of attention focus modulate the occurrence of left/right asymmetries in the saccadic reaction times of human subjects.
    Weber H; Fischer B
    Vision Res; 1995 Apr; 35(7):987-98. PubMed ID: 7762155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural correlates of inter- and intra-individual saccadic reaction time differences in the gap/overlap paradigm.
    Ozyurt J; Greenlee MW
    J Neurophysiol; 2011 May; 105(5):2438-47. PubMed ID: 21346217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of ethanol on anti-saccade task performance.
    Khan SA; Ford K; Timney B; Everling S
    Exp Brain Res; 2003 May; 150(1):68-74. PubMed ID: 12698218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-unit activity in marmoset posterior parietal cortex in a gap saccade task.
    Ma L; Selvanayagam J; Ghahremani M; Hayrynen LK; Johnston KD; Everling S
    J Neurophysiol; 2020 Mar; 123(3):896-911. PubMed ID: 31967927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prestimulus cortical potentials predict the performance in a saccadic distractor paradigm.
    Everling S; Matthews A; Flohr H
    Clin Neurophysiol; 2001 Jun; 112(6):1088-95. PubMed ID: 11377269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response latencies and event-related potentials during the gap paradigm using saccadic responses in human subjects.
    Gómez C; Atienza M; Gómez GJ; Vázquez M
    Int J Psychophysiol; 1996; 23(1-2):91-9. PubMed ID: 8880369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating the components of the gap effect.
    Pratt J; Bekkering H; Leung M
    Exp Brain Res; 2000 Jan; 130(2):258-63. PubMed ID: 10672480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.